
Notes on Generating Random Permutations

January 24, 2008

(Adapted partially from Cormen et al’s Introduction to Algorithms.
Problem Statement: We want to generate permutations of 1 . . . n uniformly at random, meaning
each permutation has probability 1/n! of occurring. Note that this allows us a general means to
permute any n elements, say of an array, by permuting the indices of the array.

The first algorithm we consider (Algorithm 1) is obviously correct. Any output is a legal per-
mutation, and the probability of any given permutation is 1/n! because the elements are selected
completely at random at each step. The running time is more complicated to analyze. We’ll con-
sider it on average. First let’s consider the question of how many random draws we would expect
to have to make in order to generate a new number for some j.

j of the n numbers would be duplicates, so the probability of success (generating a new num-
ber) is n−j

n . Then the expectation of the number of trials until the first success is n
n−j (this is a

standard result – when you have Bernoulli trials with probability p of sucess the expected number
of trials until first success is 1/p – look up the geometric distribution if you are interested in the
derivation.

So now, for the running time we get:

n−1∑
j=0

n

n− j
= n

n∑
j=1

1
j

= O(n log n)

Keep in mind that there is always some chance that the algorithm will not terminate by any
specified finite time T .

Input: n
for i in 1 to n do

used[i] = false
end for
for j in 0 to n− 1 do

repeat
temp = randInt(1,n)
if not(used[temp]) then

a[j] = temp
used[temp] = true

end if
until a[j] is filled

end for
Algorithm 1: Not so great algorithm for permutation

1



Input: n
for i in 0 to n− 1 do

a[i] = i+1
end for
for j in 0 to n− 1 do

swap(a[j], a[randInt(j,n-1)])
end for

Algorithm 2: Better algorithm for permutation

Algorithm 2 is a better algorithm. The running time is obvious: O(n). Proving correctness is
not so easy. First, define a k-permutation of a set of n elements as a sequence containing k of those
n elements. There are n!

(n−k)! such permutations (how?).
We now introduce the following loop invariant:

Prior to the jth iteration, a[0 . . . j − 1] contains each j-permutation with probability (n−j)!
n! .

Convince yourself that the loop invariant holds for j = 0, 1. Now that we have the base case
done, we have to show that the loop invariant is maintained at each iteration. Let’s say iteration j
ends with: 〈x0, x1, . . . , xj〉 Define the following two events
Event E1 is that the first j − 1 iterations have yielded 〈x0, . . . , xj−1〉
Event E2 is that the jth iteration puts xj in position j
Applying Bayes rule,

Pr(E2 ∧ E1) = Pr(E2|E1) Pr(E1)

=
1

n− j

(n− j)!
n!

=
(n− j − 1)!

n!
This proves that the loop invariant is maintained.

Finally, at termination, j = n, so a contains each n-permutation with probability (n− n)!/n! =
1/n!.

2


