Course Structure

Computer Science 2300: Data Structures and Algorithms

\qquad
RPI, Spring 2009 Instructor: Sanmay Das

- 2 lectures (MTh i2-I:30) and i lab (W -- must attend your assigned lab)
- Small lab projects (-6), plus -8 homeworks $(20 \%+$ 35% of grade)
- One midterm (20%), plus a final exam (25%)
- http://www.cs.rpi.edu/-sanmay/teaching/cs2300/

What is this class about?

- Thinking like a computer scientist
- Continuing the transition from programmer
- Learning how to approach problems
- NOT about code. We assume you are competent in C++

Textbooks

- Primary: Algorithms by Dasgupta, Papadimitriou, and Vazirani (more readable) [DPV]
- Secondary: Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein (more encyclopedic) [CLRS]
- Any programming reference you need, but none assigned (suggestion, Stroustrup)

Prerequisites

- CS2 and Discrete Structures
- Taking Discrete Structures right now?
- Motivated? Confident about picking up discrete math quickly?
- Check the appendices in CLRS
- Programming: you won't need any new tricks, but there will be little handholding!

Syllabus and Course Policies

- Role of labs
- You are responsible for all announcements made in lecture, posted on the website, or sent via email
- Late-day policy
- Collaboration policy
- Grading policies
- My office hours: Mondays after class. Plus by appointment
- TAs: Eyuphan Bulut and Ashok Sukumaran
- Primary point of contact: your lab TA
- Available during lab (OH in non-lab weeks, but not this week) and by appointment - UTAs will be available during labs to help you out

Staff

Lectures

- I strongly encourage attendance. You are responsible for everything discussed.
- I'm a big fan of questions. Both receiving them and posing them.
- If no one answers my questions I will wait as long as it takes until someone does

Data Structures \& Algorithms

- MCDXLVIII + DCCCXII = ?
- Answer: MMCCLX
- How did you do it? $1448+8 \mathrm{r} 2=2260$?

Addition, contd.

- Note that representation is key (sort of like a data structure)
- Algorithms operate on data
- Decimal addition is easy, roman numeral addition is not!

A Brief Tour of the Class

- Introduction. Correctness and running time analysis
- Divide-and-conquer algorithms. How to reduce problems.
- Faster integer multiplication (!)
- Sorting
- Median-finding

Graph Algorithms

-Why graphs?

- Encapsulate many problems
- The web!!
- Graph representations
- Lists or matrices?
- Exploring graphs and finding short paths

Data Structures

- More familiar, but more advanced material, which will be coupled with interesting new algorithms:
- Heaps
- Trees
- Hash tables

Analysis of Algorithms

- Two things we care deeply about:
- Proving correctness
- Analyzing running time

More advanced algorithms

- Dynamic programming
- Introduction to NP-completeness -- when can we (probably) not solve a (large) problem exactly?
- O, I, I, 2, 3, 5, 8, I3, 2I, 34, ...
- From rabbit reproduction to Vedic metre...
- Rule:
- $\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-\mathrm{x}}+\mathrm{F}_{\mathrm{n}-2}, \mathrm{n}>\mathrm{I}$
- $\mathrm{F}_{\mathrm{n}}=\mathrm{I}, \mathrm{n}=\mathrm{I}$
- $\mathrm{F}_{\mathrm{n}}=\mathrm{o}, \mathrm{n}=\mathrm{o}$

Some Properties

- Grow almost as fast as powers of 2 !
- $\mathrm{F}_{\mathrm{n}} \approx 2^{0.694 \mathrm{n}}$
- $\mathrm{F}_{\text {roo }}$ is 2I digits long!

Time

- $\mathrm{T}(\mathrm{n})$: \# computer steps taken to compute fibi(n)
- $\mathrm{T}(\mathrm{n}) \leq 2$ for $\mathrm{n} \leq \mathrm{I}$
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-\mathrm{I})+\mathrm{T}(\mathrm{n}-2)+3$ for $\mathrm{n}>\mathrm{I}$
- $\mathrm{T}(\mathrm{n}) \geq \mathrm{F}_{\mathrm{n}}$!!
- This is very bad news. Exponential complexity!

How to compute F_{n} ?

- function fibi(n)
- if $\mathrm{n}=\mathrm{o}$: return o
- if $\mathrm{n}=\mathrm{I}$: return I
- return fibr $(\mathrm{n}-\mathrm{I})+\operatorname{fibr}(\mathrm{n}-2)$
- Correctness?
- Time taken?

A Better Algorithm

Running Time?

- if $\mathrm{n}=0$: return 0
- create an array flo...n]
- $\mathrm{flol}=0, \mathrm{fli}]=\mathrm{I}$
- for $\mathrm{i}=2 \ldots \mathrm{n}$:
- $\mathrm{f}\lfloor\mathrm{i}]=\mathrm{f}\lfloor\mathrm{i}-\mathrm{I}\rceil+\mathrm{f}[\mathrm{i}-2\rceil$
- return f[n]
- Linear!
- Caveat:
- When does it stop making sense to think of each computer operation as I time unit?
- F_{n} is about 0.694 bits long. We'll quickly exceed 32 (or even i28) bits, so can't just assume one operation.

Big-O Notation

- $f(n), g(n)$: functions from integers to reals
- f is $\mathrm{O}(\mathrm{g})$ if \exists (positive) constants c and no such that $\mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}$ 。
- Intuition: f grows no faster than g

Analogs

Rules of Thumb

- $\mathrm{f}=\Omega(\mathrm{g}): \mathrm{g}=\mathrm{O}(\mathrm{f})$
- $\mathrm{f}=\mathrm{\Theta}(\mathrm{~g}): \mathrm{f}=\mathrm{O}(\mathrm{g})$ and $\mathrm{g}=\mathrm{O}(\mathrm{f})$
- Small o: strictly slower growth
- Exponentials dominate polynomials
- Polynomials dominate logs
- n^{a} dominates n^{b} if $\mathrm{a}>\mathrm{b}$
- Omit multiplicative constants

Maximum Subsequence Sum

- Given a sequence of integers $A_{r}, \ldots A_{n}$, find the maximum value of $\sum_{k=i}^{j} \mathbf{A}_{k}$

Algorithm I

- maxSum = o
- for i in o : n^{-1}
- for j in $\mathrm{i}: \mathrm{n}-\mathrm{I}$
- thisSum = 0
- for k in $i: j$
- thisSum $=$ thisSum $+\mathrm{a}[\mathrm{k}]$
- if (thisSum > maxSum)
- maxSum = thisSum

Running Time?

An $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Algorithm

- Simple analysis: 3 loops, one inside the other, each of worst case size n : $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- More sophisticated: still O(n³)

$$
\begin{aligned}
& \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{j} 1= \\
& \sum_{k=i}^{j} 1=\quad j-i+1 \\
& \sum_{j=i}^{n-1}(j-i+1)=\frac{(n-i+1)(n-i)}{2} \\
& \sum_{i=0}^{n-1} \frac{(n-i+1)(n-i)}{2}=\frac{n^{3}+3 n^{2}+2 n}{6}
\end{aligned}
$$

- maxSum = o
- for i in $\mathrm{o}: \mathrm{n}^{-1}$
- thisSum =o
- for j in $\mathrm{i}: \mathrm{n}-\mathrm{r}$
- thisSum $=$ thisSum $+\mathrm{a}[j]$
- if (thisSum > maxSum)
- maxSum = thisSum
- return maxSum

Why Does This Work?

- Key observation: Any negative subsequence cannot be a prefix of the optimal subsequence. We compute the maximum subsequence ending at position j
- Whenever a subsequence first becomes negative, we can reset and consider only subsequences that start beyond j (why?)

