
Computer Science 2300: Data 
Structures and Algorithms

RPI, Spring 2009
Instructor: Sanmay Das

Course Structure

• 2 lectures !MTh 12"1:30# and 1 lab !W "" must 
attend your assigned lab#

• Small lab projects !$6#, plus $8 homeworks !20% + 
35% of grade#

• One midterm !20%#, plus a &nal exam !25%#

• http://www.cs.rpi.edu/$sanmay/teaching/cs2300/

What is this class about?

• Thinking like a computer scientist

• Continuing the transition from programmer

• Learning how to approach problems

• NOT about code. We assume you are competent 
in C++ 

Textbooks

• Primary: Algorithms by Dasgupta, Papadimitriou, 
and Vazirani !more readable# 'DPV(

• Secondary: Introduction to Algorithms by Cormen, 
Leiserson, Rivest and Stein !more encyclopedic# 
'CLRS(

• Any programming reference you need, but none 
assigned !suggestion, Stroustrup#



Prerequisites

• CS2 and Discrete Structures

• Taking Discrete Structures right now? 

• Motivated? Con&dent about picking up 
discrete math quickly?

• Check the appendices in CLRS

• Programming: you won)t need any new tricks, but 
there will be little handholding!

Sta+

• My o*ce hours: Mondays after class. Plus by appointment

• TAs: Eyuphan Bulut and Ashok Sukumaran

• Primary point of contact: your lab TA

• Available during lab !OH in non"lab weeks, but not this 
week# and by appointment

• UTAs will be available during labs to help you out

Syllabus and Course Policies

• Role of labs

• You are responsible for all announcements made 
in lecture, posted on the website, or sent via e"
mail

• Late"day policy

• Collaboration policy

• Grading policies

Lectures

• I strongly encourage attendance. You are 
responsible for everything discussed.

• I)m a big fan of questions. Both receiving them 
and posing them.

• If no one answers my questions I will wait as long 
as it takes until someone does



Data Structures & Algorithms

• MCDXLVIII + DCCCXII = ?

• Answer: MMCCLX

• How did you do it? 1448 + 812 = 2260?

Addition, contd.

• Note that representation is key !sort of like a data 
structure#

• Algorithms operate on data

• Decimal addition is easy, roman numeral addition 
is not!

A Brief Tour of the Class

• Introduction. Correctness and running time 
analysis

• Divide"and"conquer algorithms. How to reduce 
problems.

• Faster integer multiplication !!#

• Sorting 

• Median"&nding

Graph Algorithms

• Why graphs? 

• Encapsulate many problems

• The web!!

• Graph representations

• Lists or matrices?

• Exploring graphs and &nding short paths



Data Structures

• More familiar, but more advanced material, which 
will be coupled with interesting new algorithms:

• Heaps

• Trees

• Hash tables

More advanced algorithms

• Dynamic programming

• Introduction to NP"completeness "" when can we 
!probably# not solve a !large# problem exactly?

Analysis of Algorithms

• Two things we care deeply about:

• Proving correctness

• Analyzing running time

Fibonacci Numbers

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

• From rabbit reproduction to Vedic metre...

• Rule: 

• Fn = Fn"1 + Fn"2, n > 1

• Fn = 1, n = 1

• Fn = 0, n= 0



Some Properties

• Grow almost as fast as powers of 2!

• Fn , 20.694n

• F100 is 21 digits long!

How to compute Fn?

• function &b1!n#

• if n = 0: return 0

• if n = 1: return 1

• return &b1!n"1# + &b1!n"2#

• Correctness? 

• Time taken? 

Time

• T!n# : # computer steps taken to compute &b1!n#

• T!n# - 2 for n - 1

• T!n# = T!n"1# + T!n"2# + 3 for n > 1

• T!n# . Fn !!

• This is very bad news. Exponential complexity!

Why so slow?



A Better Algorithm

• if n = 0 : return 0

• create an array f'0...n(

• f'0( = 0, f'1( = 1

• for i = 2...n:

• f'i( = f'i"1( + f'i"2(

• return f'n(

Running Time?

• Linear!

• Caveat:

• When does it stop making sense to think of 
each computer operation as 1 time unit?

• Fn is about 0.694 bits long. We)ll quickly exceed 32 
!or even 128# bits, so can)t just assume one 
operation.

Big"O Notation

• f!n#, g!n# : functions from integers to reals

• f is O!g# if ∃ !positive# constants c and n0 such 

that f!n# - c g!n# for n . n0

• Intuition: f grows no faster than g



Analogs

• f = / !g# : g = O!f#

• f = ! !g# : f = O!g# and g = O!f#

• Small o: strictly slower growth

Rules of Thumb

• Exponentials dominate polynomials

• Polynomials dominate logs

• na dominates nb if a > b

• Omit multiplicative constants

Maximum Subsequence Sum

• Given a sequence of integers A1, ... An, &nd the 
maximum value of 

• Example: "2, 11, "4, 13, "5, "2

• Answer: 20

∑j
k=i Ak

Algorithm 1

• maxSum = 0

• for i in 0:n"1

• for j in i:n"1

• thisSum = 0

• for k in i:j

• thisSum = thisSum + a'k(

• if !thisSum > maxSum#

• maxSum = thisSum



Running Time?

• Simple analysis: 3 loops, one inside the other, each 
of worst case size n : O!n3#

• More sophisticated: still O!n3#

n−1∑

i=0

n−1∑

j=i

j∑

k=i

1 = ?

j∑

k=i

1 = j − i + 1

n−1∑

j=i

(j − i + 1) = (n−i+1)(n−i)
2

n−1∑

i=0

(n− i + 1)(n− i)
2

= n3+3n2+2n
6

An O!n2# Algorithm

• maxSum = 0

• for i in 0:n"1

• thisSum = 0

• for j in i:n"1

• thisSum = thisSum + a'j(

• if !thisSum > maxSum#

• maxSum = thisSum

• return maxSum

An O!n# Algorithm

• maxSum = 0, thisSum = 0

• for j in 0:n"1

• thisSum = thisSum + a'j(

• if !thisSum > maxSum#

• maxSum = thisSum

• else if !thisSum < 0#

• thisSum = 0

• return maxSum

Why Does This Work?

• Key observation: Any negative subsequence 
cannot be a pre&x of the optimal subsequence. We 
compute the maximum subsequence ending at 
position j

• Whenever a subsequence &rst becomes negative, 
we can reset and consider only subsequences that 
start beyond j !why?#


