
Computer Science 2300: Lab 2

Due: Tuesday February 16, 2010

The purpose of this lab is to give you practical experience with “divide-and-conquer” approaches by imple-
menting and analyzing the merge sort and quick sort algorithms.

1 Implementing the Merge Sort and Quicksort Algorithms

Write two separate programs that implement the recursive version of merge sort and quick sort, respectively.
The programs should take as input a file of integers (which will be provided to you) and a bit that determines
if the results should be printed or not. For example, consider the following text file:

<num.txt>
2
44
1
34

If the program is run as follows:

$:~ ./merge-sort num.txt 1 (or ./quicksort num.txt 1)

The result should be:

original list: [2] [44] [1] [34]
sorted list: [1] [2] [34] [44]

However, if the program is run with a 0 bit instead, no results should be outputted:

$:~ ./merge-sort num.txt 0 (or ./quicksort num.txt 0)
$:~

You can use the provided text files (4.txt, 8.txt, 16.txt) in lab2-files.tar.gz (on the course web-page) to test
your programs.

2 Analysis and Comparison against Selection Sort

Mergesort has a run-time of O(n log n). Quicksort has complexity O(n2) in the worst case, but is also
O(n log n) on average. However, quicksort has significantly less overhead. Selection sort is an algorithm that
runs in O(n2) time. In the tar file, there is a file called selection-sort.cpp and other text files, numbered
from 400.txt - 50000.txt. Run your merge sort and quick sort implementations on these files (do not
print out the results when you do this!). Additionally, compile selection-sort.cpp and run it with the
aforementioned files as input. Record the running times of each algorithm and plot the results. Show this
to your TA to receive full credit.

1


