
Computer Science 2300: Homework 5

Due: April 7, 2011

Note: Please use rigorous, formal arguments. If you are asked to provide an algorithm then you
may either write pseudocode similar to the pseudocode in the DPV text, or provide a clear de-
scription in English. You must also provide an argument for why the algorithm is correct, and an
analysis of the running time. We encourage you to collaborate with other students, while respect-
ing the collaboration policy. Please write the names of all the other students you collaborated with
on the homework. Hardcopies are required by submission time. E-mailed versions will not be
accepted.

1. (5 points) Given a uniform hash function, derive the probability that there will be no colli-
sions when inserting n elements into a hash table of size m.

2. (5 points). Suppose you want to also support deletions in a hash table. Suppose you imple-
mented deletion in an open-addressed hash table when using linear probing by the follow-
ing simple method: When searching for key x, compute h(x), the hash of x. Then search
linearly, starting from position h(x) until you find the element with key x. Then delete that
element from the hash table. Give an example of a situation where this would lead to incor-
rect future results when using the hash table.

3. (10 points) Suppose social security numbers are generated uniformly at random (with re-
placement: this is obviously a massive oversimplification because two people could then
have the same social security number). How many people need to be in a room before it
is more likely than not that two people in the room have the same last four digits of their
SSNs?

4. (15 points total)

(a) (5 points) Assume you have access to a function that, in constant time, generates a
real number uniformly at random between 0 and 1. Suppose you are given a discrete
probability distribution, that is:
A set of n real numbers p1, p2, . . . , pn such that

∑n
i=1 pi = 1.

Give an algorithm that generates a random integer x between 1 and n satisfying the
condition that Pr(x = i) = pi, and runs in time O(n+log n) (the log n is left in there as a
hint). So, for example, if n = 3 with p1 = 0.3, p2 = 0.5, p3 = 0.2 then it should generate
1 with probability 0.3, 2 with probability 0.5, and 3 with probability 0.2.

(b) (10 points) Let’s generalize this. Again, suppose you are given a discrete probability
distribution p1, p2, . . . , pn such that

∑n
i=1 pi = 1, and access to a function that gen-

erates a real number uniformly at random between 0 and 1 in constant time. Give
an algorithm to generate k integers x1, . . . , xk between 1 and n so that for each j,

1



Pr(xj = m) = pm. Your algorithm should run in time O(n + k log k). (Note that an
obvious generalization of Part (a) would give you a running time ofO(n+k log n). This
version will be be useful in situations where n� k).

5. (15 points, based on CLRS Problem 11.2-6). Suppose you have stored n keys in a hash table
of size m, with collisions resolved by chaining, and you know the length of each chain. Let
L be the length of the longest chain. Each entry in the hash table is of course associated with
a key. Design an algorithm that selects a key uniformly at random among the keys in the
hash table (remember that you don’t have direct access to the keys, only to the hash table).
You algorithm should run in expected time O(L(1 + 1/α)) where α = n/m. You must prove
the running time bound!

2


