Computer Science 2300: Homework 1

Due: February 9, 2012

Note: Please use rigorous, formal arguments. You will not receive full credit otherwise. Homework is due at the beginning of lecture.

1. (10 points) [Based on a question from Cormen et al's Introduction to Algorithms] Consider the following procedure for generating a permutation of the numbers $1 \ldots n$. First, choose an integer r uniformly at random between 1 and n. Now consider the array A with indices from 0 to $n-1$. Fill $A[i]$ with the number $i+r+1$ if $i+r+1 \leq n$ and with the number $i+r+1-n$ otherwise. First show that each number between 1 and n has a $1 / n$ probability of winding up in any particular position in A. Then show that the resulting permutation in A is not uniformly random.
2. (10 points) Let F_{k} be the Fibonacci numbers, with $F_{0}=0, F_{1}=1$, and $F_{i}=F_{i-1}+F_{i-2}$ if $i>1$. Prove by induction that $F_{n-1} F_{n+1}=F_{n}^{2}+(-1)^{n}$.
3. (20 points) Problem 0.1 in DPV, parts (h) through (q) only (2 points each)
4. (20 points) Problem 2.5 in DPV, parts a through j (2 points each) only (pages 71-72). For 5 points of extra credit if you get it right, you can also do part k.
5. (10 points) Problem 2.19 in DPV.
