
Regression

Statistics: describing data, inferring conclu-

sions

Machine learning: predicting future data (out-

of-sample)

Assumption for linear regression: data can be

modeled by

yi = α+ βxi + �i

First algorithmic question for us: how to find

α and β ?
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Least Squares

Define x and y as usual from our sample data.

Now define:

Sxx =

n�

i=1

(xi − x)2

Syy =

n�

i=1

(yi − y)2

Sxy =

n�

i=1

(xi − x)(yi − y)

Let’s fit a line to the data as best as we can.

How do we define this? Residual sum of squares

(RSS)

n�

i=1

(yi − (c+ dxi))
2
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Now, find a and b, estimators of α and β, such

that:

min
c,d

n�

i=1

(yi− (c+dxi))
2
=

n�

i=1

(yi− (a+ bxi))
2

For any fixed value of d, the minimizing value

of c can be found as follows.

n�

i=1

(yi − (c+ dxi))
2
=

n�

i=1

((yi − dxi)− c)2

Turns out the right side is minimized at

c =
1

n

n�

i=1

(yi − dxi)

= y − dx

Why?

min
a

n�

i=1

(xi − a)2 = min
a

n�

i=1

(xi − x+ x− a)2

=

n�

i=1

(xi−x)2+2

n�

i=1

(xi−x)(x−a)+
n�

i=1

(x−a)2

Second term drops out, basically giving us our

result

For a given value of d, the minimum value of

RSS is then

n�

i=1

((yi − dxi)− (y − dx))2

=

n�

i=1

((yi − y)− d(xi − x))2

= Syy − 2dSxy + d2Sxx

Take the derivative with respect to d and set

to 0

−2Sxy +2dSxx = 0

⇒ d =
Sxy

Sxx



Multivariate Regression

Hypothesis space? Characterized by the vector

w = (w0, w1, . . . wn), where

h(xj) = w0 + w1x
j
1
+ w2x

j
2
+ . . . wnx

j
n

w0 is the intercept term. Can just “add on” a

feature that is always 1. Then h(xj) = w · xj

Find w∗
= argmin

w

�
j(y

j −w · xj)2

Gradient descent will find the (unique) min of

the loss function:

wi ← wi + α
�

j

xji(y
j − hw(xj))
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Classification Using Linear Models

Two examples of data from earthquakes (white

circles) and nuclear explosions (black circles).

x1 and x2 are body wave magnitude and sur-

face wave magnitude, respectively.
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Linear separator: −4.9+ 1.7x1 − x2 = 0.

hw(x) = 1 if w · x ≥ 0 and 0 otherwise.

In higher dimensions, the separator is called a

hyperplane
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Perceptron Learning Rule

wi ← wi +∆wi

where

∆wi = α(y − hw(x))xi

Nice fact: will provably converge to a linear

separator if one exists.

Not so nice: behaves unpredictably while train-

ing, and behavior is poor if the data are not

linearly separable (although can be improved

upon with some tricks)

Much of this is because of the hard threshold

in 0/1 classification.
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Logistic Regression

Use the logistic function 1/(1+ e−z
) to map a

real-valued output to a probability. Now we’ve

got soft thresholds that can be converted into

predictions as needed.
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Weight updates can be derived using gradient

descent. For square loss:

∂

∂wi
Loss(w) =

∂

∂wi
(y − hw(x))2

Very useful, and the standard in the literature

for prediction from an economics / statistics

perspective. Also the baseline for probability

estimation.


