Regression

Statistics: describing data, inferring conclu-
sions

Machine learning: predicting future data (out-
of-sample)

Assumption for linear regression: data can be
modeled by

yi=oa+ Bz +e

First algorithmic question for us: how to find
aand g7

Now, find a and b, estimators of a and 3, such
that:
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For any fixed value of d, the minimizing value
of ¢ can be found as follows.
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Turns out the right side is minimized at
1 n
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Why?

n n
. 2 R 2
maln'gl(mi—a) —malnlgl(acz—m—i-x—a)
1= =

Least Squares

Define z and 3 as usual from our sample data.
Now define:

Sez =Y (z; — T)?
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Syy = Z (yi — ?)2
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Szy =Y (i —2)(y; — 9)
i=1

Let's fit a line to the data as best as we can.
How do we define this? Residual sum of squares
(RSS)
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Second term drops out, basically giving us our
result

For a given value of d, the minimum value of
RSS is then
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Take the derivative with respect to d and set
to O
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Multivariate Regression
Hypothesis space? Characterized by the vector
w = (wg, w1, ...wn), Where

h(x?) = wo + wlle + wgm]2 + ... wnm%

wq is the intercept term. Can just “add on” a
feature that is always 1. Then h(x/) = w - x;

Find w* = argmin ¥;(y/ — w - x7)2
w
Gradient descent will find the (unique) min of

the loss function:

w; — w; + aZajg(yj - hw(xj))
J

Perceptron Learning Rule

Wy <— wW; + Awi
where

Aw; = ay — hw(x))z;

Nice fact: will provably converge to a linear
separator if one exists.

Not so nice: behaves unpredictably while train-
ing, and behavior is poor if the data are not
linearly separable (although can be improved
upon with some tricks)

Much of this is because of the hard threshold
in 0/1 classification.

Classification Using Linear Models

Two examples of data from earthquakes (white
circles) and nuclear explosions (black circles).
x1 and xo are body wave magnitude and sur-
face wave magnitude, respectively.

Linear separator: —4.9+4+1.7x1 —xp = 0.
hw(x) =1 if w-x >0 and 0 otherwise.

In higher dimensions, the separator is called a
hyperplane

Logistic Regression

Use the logistic function 1/(1 +e %) to map a
real-valued output to a probability. Now we've
got soft thresholds that can be converted into
predictions as needed.
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Weight updates can be derived using gradient
descent. For square loss:

8 8
Loss(w) = —(y — hw(x))?
ow; ow;

Very useful, and the standard in the literature
for prediction from an economics / statistics
perspective. Also the baseline for probability
estimation.



