Least Squares

Regression

Statistics: describing data, inferring conclusions

Machine learning: predicting future data (out-of-sample)

Assumption for linear regression: data can be modeled by

$$
y_{i}=\alpha+\beta x_{i}+\epsilon_{i}
$$

First algorithmic question for us: how to find α and β ?

Now, find a and b, estimators of α and β, such that:

$$
\min _{c, d} \sum_{i=1}^{n}\left(y_{i}-\left(c+d x_{i}\right)\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\left(a+b x_{i}\right)\right)^{2}
$$

For any fixed value of d, the minimizing value of c can be found as follows.

$$
\sum_{i=1}^{n}\left(y_{i}-\left(c+d x_{i}\right)\right)^{2}=\sum_{i=1}^{n}\left(\left(y_{i}-d x_{i}\right)-c\right)^{2}
$$

Turns out the right side is minimized at

$$
\begin{aligned}
& c=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-d x_{i}\right) \\
& =\bar{y}-d \bar{x}
\end{aligned}
$$

Why?

$$
\min _{a} \sum_{i=1}^{n}\left(x_{i}-a\right)^{2}=\min _{a} \sum_{i=1}^{n}\left(x_{i}-\bar{x}+\bar{x}-a\right)^{2}
$$

Define \bar{x} and \bar{y} as usual from our sample data. Now define:

$$
\begin{aligned}
& S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& S_{y y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \\
& S_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{aligned}
$$

Let's fit a line to the data as best as we can. How do we define this? Residual sum of squares (RSS)

$$
\sum_{i=1}^{n}\left(y_{i}-\left(c+d x_{i}\right)\right)^{2}
$$

2

$$
=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+2 \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)(\bar{x}-a)+\sum_{i=1}^{n}(\bar{x}-a)^{2}
$$

Second term drops out, basically giving us our result

For a given value of d, the minimum value of RSS is then

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\left(y_{i}-d x_{i}\right)-(\bar{y}-d \bar{x})\right)^{2} \\
& =\sum_{i=1}^{n}\left(\left(y_{i}-\bar{y}\right)-d\left(x_{i}-\bar{x}\right)\right)^{2} \\
& =S_{y y}-2 d S_{x y}+d^{2} S_{x x}
\end{aligned}
$$

Take the derivative with respect to d and set to 0

$$
\begin{aligned}
& -2 S_{x y}+2 d S_{x x}=0 \\
& \Rightarrow d=\frac{S_{x y}}{S_{x x}}
\end{aligned}
$$

Classification Using Linear Models

Multivariate Regression

Hypothesis space? Characterized by the vector $\mathbf{w}=\left(w_{0}, w_{1}, \ldots w_{n}\right)$, where

$$
h\left(\mathbf{x}^{j}\right)=w_{0}+w_{1} x_{1}^{j}+w_{2} x_{2}^{j}+\ldots w_{n} x_{n}^{j}
$$

w_{0} is the intercept term. Can just "add on" a feature that is always 1 . Then $h\left(\mathbf{x}^{j}\right)=\mathbf{w} \cdot \mathbf{x}_{j}$

Find $\mathbf{w}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{j}\left(y^{j}-\mathbf{w} \cdot \mathbf{x}^{j}\right)^{2}$
Gradient descent will find the (unique) min of the loss function:

$$
w_{i} \leftarrow w_{i}+\alpha \sum_{j} x_{i}^{j}\left(y^{j}-h_{\mathbf{w}}\left(\mathbf{x}^{j}\right)\right)
$$

Logistic Regression

Use the logistic function $1 /\left(1+e^{-z}\right)$ to map a real-valued output to a probability. Now we've got soft thresholds that can be converted into predictions as needed.

$$
h_{\mathbf{w}}(\mathbf{x})=\frac{1}{1+e^{-\mathbf{w} \cdot \mathbf{x}}}
$$

Weight updates can be derived using gradient descent. For square loss:

$$
\frac{\partial}{\partial w_{i}} \operatorname{Loss}(\mathbf{w})=\frac{\partial}{\partial w_{i}}\left(y-h_{\mathbf{w}}(\mathbf{x})\right)^{2}
$$

Very useful, and the standard in the literature for prediction from an economics / statistics perspective. Also the baseline for probability estimation.

