
About this class

k-Nearest-Neighbors

Bagging

Boosting

1



Nearest-Neighbor Methods

Store all training examples

Given a new test example, find the k that are

closest to it in feature space (distance: Eu-

clidean/Mahalanobis?)

Return majority classification among those k

points

Curse of dimensionality – irrelevant features

can dominate classification

Training is trivial, but efficiency of finding k

nearest points?

Use intelligent data structures like kd-trees.

Worst case behavior is bad for nearest-neighor

2



search (O(l)) but much better on average (al-

though distribution dependent). Initial fixed

cost to building the tree

Big caveat: search cost seems to scale badly

with the number of dimensions in the feature

space!

Very simple but efective algorithm!



Bagging

Bootstrap Aggregating (Breiman, 1994)

Key idea: Build t independent replicates of the

training set L by sampling with replacement

Train classifier on each of them

Predict the majority of all these classifiers

In the case of a regression problem, predict the

average

For decision trees: significant improvement in

accuracy, but a loss in comprehensibility

Works well for unstable algorithms. Intuition:

unstable algorithms can change their predic-

tions substantially based on small changes in

the training set, which is essentially what each

3



replicate training set is doing. When you aver-
age over multiple sets of training data, you’re
getting a more stable predictor.

Let fA be the aggregated predictor. Then
fA(x) attempts to approximate ELf(x)

How different are the training sets? The prob-
ability that a given example is not in a given
subset is (1− 1/n)n → 1/e = 0.368 as n→∞.

Empirically, 50 replicates give all the benefit
of bagging, often a 20% to 40% reduction in
error rate.

Each trained model has higher initial variance
since it is trained on a smaller training set.

Bagging stable classifiers can somewhat de-
grade performance

What would happen with linear regression or
Naive Bayes?



Boosting

Basic question: Can we take an algorithm that

learns weak hypotheses that perform some-

what better than chance and make it into a

strong learner?

Answer: yes (Freund and Schapire, various pa-

pers)

We’ll again build an ensemble classifier, but,

unlike bagging, members of the ensemble will

have different weights

Bagging reduces variance (albeit slower than

1/n because the training set is replicated), but

boosting reduces bias by making the hypothe-

sis space more flexible

4



AdaBoost Algorithm

Given:

Training examples (xi, yi), . . . , (xm, ym)

A weak learning algorithm, guaranteed to make

error ε ≤ 1
2 − γ

Maintain a weight distribution D over training

examples. Initialize D(i) = 1/m.

Now repeat for a number of rounds T :

1. Train weak learner using distribution D.

This gives a weak hypothesis ht : X →
{±1}. ht has error

εt = Pr
i∼Dt

[h(xi) 6= yi]

5



2. αt ← 1
2 log

(
1−εt
εt

)

3. Update:

D(i)←
D(i)

Z
e−αt if ht(xi) = yi

D(i)←
D(i)

Z
eαt if ht(xi) 6= yi

where Z is a normalization factor

Return final hypothesis:

H(x) = sgn

 T∑
t=1

αtht(x)



Caveat: We need a weak learner that can learn

even on hard weight distributions!



Training Error

First let’s bound the weight distribution:

DT+1(i) =
DT (i)

ZT
exp(−αThT (xi)yi)

DT+1(i) =
1

n

T∏
t=1

1

Zt
exp(−αThT (xi)yi)

=
1

n

exp
∑T
t=1(−αtht(xi)yi)∏T

t=1Zt

Now for the training error:

ε =
1

n

∑
i

I[yi
∑
t

αtht(xi) ≤ 0]

≤
1

n

∑
i

exp(−yi
∑
t

αtht(xi))

6



Substituting from above,

ε ≤
∑
i

DT+1(i)
∏
t

Zt

=
∏
t

Zt

Finally,

Zt =
∑

i:ht(xi)=yi

Dt(i)e
−αt +

∑
i:ht(xi)6=yi

Dt(i)e
αt

= e−αt(1− εt) + eαt(εt)

= 2
√
εt(1− εt)

=
√

1− 4γ2
t

≤ exp(−2γ2
t )

So, proof that we can boost weak learners that

meet the requisite conditions into strong learn-

ers!



Generalization and Empirical
Properties

Fairly robust to overfitting. In fact, often test

error keeps decreasing even after training error

has converged

Works well with a range of hypotheses, includ-

ing decision trees, stumps, and Naive Bayes

Relation to SVMs? Can think of boosting

as maximizing a different margin, and of us-

ing multiple weak learners to go to a high di-

mensional space, instead of using a kernel like

SVMs do. Computationally, boosting is easier

(LP as opposed to QP)

7


