About this class

k-Nearest-Neighbors

Bagging

Boosting



Nearest-Neighbor Methods
Store all training examples

Given a new test example, find the k that are
closest to it in feature space (distance: Eu-
clidean/Mahalanobis?)

Return majority classification among those k
points

Curse of dimensionality — irrelevant features
can dominate classification

Training is trivial, but efficiency of finding k
nearest points?

Use intelligent data structures like kd-trees.
Worst case behavior is bad for nearest-neighor



search (O(l)) but much better on average (al-
though distribution dependent). Initial fixed
cost to building the tree

Big caveat: search cost seems to scale badly
with the number of dimensions in the feature
spacel!

Very simple but efective algorithm!



Bagging
Bootstrap Aggregating (Breiman, 1994)

Key idea: Build t independent replicates of the
training set L by sampling with replacement

Train classifier on each of them
Predict the majority of all these classifiers

In the case of a regression problem, predict the
average

For decision trees: significant improvement in
accuracy, but a loss in comprehensibility

Works well for unstable algorithms. Intuition:

unstable algorithms can change their predic-

tions substantially based on small changes in

the training set, which is essentially what each
3



replicate training set is doing. When you aver-
age over multiple sets of training data, you're
getting a more stable predictor.

Let f4 be the aggregated predictor. Then
fa(x) attempts to approximate Ej f(x)

How different are the training sets? The prob-
ability that a given example is not in a given
subset is (1 —1/n)" — 1/e = 0.368 as n — oo.

Empirically, 50 replicates give all the benefit
of bagging, often a 20% to 40% reduction in
error rate.

Each trained model has higher initial variance
since it is trained on a smaller training set.

Bagging stable classifiers can somewhat de-
grade performance

What would happen with linear regression or
Naive Bayes?



Boosting

Basic question: Can we take an algorithm that
learns weak hypotheses that perform some-
what better than chance and make it into a
strong learner?

Answer: yes (Freund and Schapire, various pa-
pers)

We'll again build an ensemble classifier, but,
unlike bagging, members of the ensemble will
have different weights

Bagging reduces variance (albeit slower than
1/n because the training set is replicated), but
boosting reduces bias by making the hypothe-
Sis space more flexible



AdaBoost Algorithm
Given:
Training examples (x;,9;), ..., (xm, ym)

A weak learning algorithm, guaranteed to make
error e < % — 7y

Maintain a weight distribution D over training
examples. Initialize D(i) = 1/m.

Now repeat for a number of rounds T':

1. Train weak learner using distribution D.
This gives a weak hypothesis h; | X —
{£1}. ht has error

e = Pr [h(z;) 7 vl

1~1Dt



€t

2. o %Iog (1_€t)

3. Update:
D
DGy — 2D —ou i hy(a) = us
DU
D(i) «— g)eat it hi(x;) # vy,

where Z is a normalization factor

Return final hypothesis:

T
H(x) = sgn (Z atht(a:)>
t=1

Caveat: We need a weak learner that can learn
even on hard weight distributions!



Training Error

First let’'s bound the weight distribution:

Dr(4)

Dryq1(i) = exp(—arhr(x;)y;)

T
, 1 Lo

Dpy1(3) == ] = exp(—arphr(z;)y;)
ntzl Zt

_ lexp S (—arhi(z)y;)
n ngl Z

Now for the training error:

e =" 1ly Y arhu(e) < 0]
7 t

< ! > exp(—y; Y athi(x;))
ny t



Substituting from above,

e<> Dpy1(0)]] %
i /

:HZt
t

Finally,
Zy= Y, Di@e ¥+ > = Di(i)e™
i:he () =y; i-hi(z;) Zyi
=e (1 —¢) + e (et)
= 2\/€t(1 — €t)
= \/1 — 4%2

< exp(—2+7)

So, proof that we can boost weak learners that
meet the requisite conditions into strong learn-
ers!



Generalization and Empirical
Properties

Fairly robust to overfitting. In fact, often test
error keeps decreasing even after training error
has converged

Works well with a range of hypotheses, includ-
ing decision trees, stumps, and Naive Bayes

Relation to SVMs? Can think of boosting
as maximizing a different margin, and of us-
ing multiple weak learners to go to a high di-
mensional space, instead of using a kernel like
SVMs do. Computationally, boosting is easier
(LP as opposed to QP)



