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Basic Framework

[Most of this lecture from Russell & Norvig,
Chap 15]

The world evolves over time. We describe it
with certain state variables. These variables
exist at each time period. Some are observable
and some unobservable. For simplicity, we as-
sume the same variables remain (un)observable
at each time period.

Let Xt denote the state variables

Let Et denote the evidence variables

How do we define a state? Everything that’s
important to the world?

Stationary processes: Laws governing state change
and observations do not change over time (dif-
ferent from static, where the state itself does
not change)
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Markov assumption: Current state depends only

on a finite history of past states. Standard

n = 1 – then

Pr(Xt|X0:t−1) = Pr(Xt|Xt−1)

This is the transition model

Another standard Markovian assumption:

Pr(Et|X0:t, E0:t−1) = Pr(Et|Xt)

This is the observation model

Also need to specify a prior Pr(X0)



An Example

[Image from Wikipedia]

Suppose the x’s are the underlying financial

status of a company and the y’s are the S&P

bond ratings (evidence visible to the world).

Then the bond rating relies only on the current

financial status of the company, and it’s all you

get to see.

To fully specify the model, let’s say bond rat-

ings can only be A or B, and financial sta-

tus can only be Good or Bad. Then suppose

Pr(y = A|Good) = 0.8 and Pr(y = A|Bad) =
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0.05 with the probabilities of B ratings obvi-

ously one minus these values. Still need to

specify the prior and the transition model. Ex-

ample of transition model:

Pr(Goodt+1|Goodt) = 0.9

Pr(Goodt+1|Badt) = 0.05

To increase expressivity, could incorporate more

information by adding state variables (most re-

cent profits, monthly sales, sector condition

etc.), or could increase the amount of history

you condition on (Pr(Good3|Good2,Good1) >

Pr(Good3|Good2,Bad1)).



Inference in Markov Models

1. Filtering: Pr(Xt|e1:t) – update belief state

2. Prediction (a subproblem of filtering, al-

most?): Pr(Xt+k|e1:t)

3. Smoothing: Pr(Xk|e1:t), k < t – update es-

timates of what states you were previously

in, based on evidence that would have been

in the future then...

4. Finding most probably state sequence: Speech

recognition!

arg max
x1:t

Pr(x1:t|e1:t)
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Filtering

We will show that you can perform online re-

cursive estimation

Pr(Xt+1|e1:t+1) = Pr(Xt+1|e1:t, et+1)

= αPr(et+1|Xt+1, e1:t) Pr(Xt+1|e1:t)

By the Markov property of the observations:

= αPr(et+1|Xt+1) Pr(Xt+1|e1:t)

= αPr(et+1|Xt+1)
∑
xt

Pr(Xt+1|xt, e1:t) Pr(xt|e1:t)

= αPr(et+1|Xt+1)
∑
xt

Pr(Xt+1|xt) Pr(xt|e1:t)

The first two terms follow from the observa-

tion model and the transition model, respec-

tively. The third term is precisely what we are
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trying to estimate for time t+1, so we’ve come

up with a recursive formulation that solves the

problem.

The filtered estimate Pr(xt|e1:t) is sometimes

called the forward message f1:t

Prediction:

Pr(Xt+k+1|e1:t) =
∑
xt+k

Pr(Xt+k+1|xt+k) Pr(xt+k|e1:t)

Eventually converges to the stationary distri-

bution of the Markov process and essentially

loses all informational value not already con-

tained in the model



Smoothing

Pr(Xk|e1:t) = Pr(Xk|e1:k, ek+1:t)

= αPr(ek+1:t|Xk, e1:k) Pr(Xk|e1:k)

= αPr(Xk|e1:k) Pr(ek+1:t|Xk)

= αf1:kbk+1:t

Where the “backward message” is:

Pr(ek+1:t|Xk) =
∑
xk+1

Pr(ek+1:t|Xk, xk+1) Pr(xk+1|Xk)

=
∑
xk+1

Pr(ek+1, ek+2:t|xk+1) Pr(xk+1|Xk)

=
∑
xk+1

Pr(ek+1|xk+1) Pr(ek+2:t|xk+1) Pr(xk+1|Xk)
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Points to note: first and third terms come from

the model. Second term is the recursive step.

Initialize the backward phase with:

bt+1:t = 1



Smoothing and Filtering Example

Umbrella World: Rainy days and director’s um-
brellas. The security guard never leaves the
building.

Abusing notation ever-so-slightly

Pr(Rt|Rt−1) = 0.7

Pr(Rt|¬Rt−1) = 0.3

Pr(Ut|Rt) = 0.9

Pr(Ut|¬Rt) = 0.2

Umbrella appears on both days

Day 0 belief about rain: (0.5,0.5)

Day 1 action:

Pr(R1) =
∑
r0

P (R1|r0)P (r0)
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= (0.7,0.3)×0.5+(0.3,0.7)×0.5 = (0.5,0.5)

Observation update:

Pr(R1|u1) = αPr(u1|R1) Pr(R1)

= α(0.9,0.2)× (0.5,0.5) ' (0.818,0.182)

Now for Day 2:∑
r1

Pr(R2|r1) Pr(r1|u1)

= (0.7,0.3)× 0.818 + (0.3,0.7)× 0.182

' (0.627,0.373)

Observation update:

α(0.9,0.2)× (0.627,0.373) ' (0.883,0.117)

Now suppose we want to compute the smoothed

estimate of rain on Day 1. We already have

the forward message (0.818,0.182)



Pr(u2|R1) =
∑
r2

Pr(u2|r2)1P (r2|R1)

= (0.9×1× (0.7,0.3)) + (0.2×1× (0.3,0.7))

= (0.69,0.41)

Then

Pr(R1|u1, u2) = α(0.818,0.182)×(0.69,0.41)

' (0.883,0.117)

Note that the smoothed estimate is higher than

the filtered estimate, because the evidence of

an umbrella at step 2 propagates backward to

make it seem more likely that it rained on the

previous day!



Most Likely Sequence

Why not just compute the smoothed estimates
and then pick the most likely ones? Not the
same as most likely path! Example – suppose
there was an impossible transition?

Example: reconstructing speech through ut-
tered phonemes

Viterbi Algorithm

Key insight: Consider all possibilities of the
state at time t+1. For each one (for example,
Rain = True), consider all paths that reach it.
The most likely path to that state must consist
of a most likely path to some state at time t

followed by a transition to that state.

Probabilities of paths:

max
x1,...,xt

Pr(x1, . . . , xt, Xt+1|e1:t+1)
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= αPr(et+1|Xt+1) max
xt

Pr(Xt+1|xt)

max
x1,...xt−1

Pr(x1, . . . , xt|e1:t)



Hidden Markov Models

Exactly what we’ve been talking about: single
discrete unobserved random variable

Allows for nice matrix representations of many
things

Domain of Xt is {1, . . . , S}

Transition matrix: Tij = P (Xt = j|Xt−1 = i),

e.g.,

(
0.7 0.3
0.3 0.7

)

Observation matrix: Ot for each time step, di-
agonal elements P (et|Xt = i)

e.g., with U1 = true, O1 =

(
0.9 0
0 0.2

)

Forward and backward messages as column
vectors:

f1:t+1 = αOt+1T
Tf1:t

bk+1:t = TOk+1bk+2:t
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The Kalman Filter

Gaussian prior, linear Gaussian transition model
and observation model

Transition model:

p(xt+1|xt) = N(Fxt,Σx)

Observation model:

p(zt|xt) = N(Hxt,Σz)

Nice thing about Gaussians, yet again: poste-
rior representation is Gaussian, allows us to do
things

Importantly,

1. If current distribution is Gaussian and tran-
sition model is linear Gaussian, then the
one-step predicted distribution is Gaussian:

p(Xt+1|e1:t) =
∫
xt
p(Xt+1|xt)p(xt|e1:t)dxt
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2. If the predicted distribution is Gaussian and

the sensor model is linear Gaussian, then

the updated distribution after conditioning

on the new observation is Gaussian:

p(Xt+1|e1:t+1) = αp(et+1|Xt+1)p(Xt+1|e1:t)



Example: State of a Random Walk

Prior: N(x0, σ
2
0)

Transition: xt+1 ← N(xt, σ2
x)

Observation: zt ← N(xt, σ2
z )

Update equations become:

µt+1 =
(σ2
t + σ2

x)zt+1 + σ2
zµt

σ2
t + σ2

x + σ2
z

σ2
t+1 =

(σ2
t + σ2

x)σ2
z

σ2
t + σ2

x + σ2
z
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