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An Example

[Most of this lecture from Berry & Fristedt]

You want to maximize the sum of two observa-
tions. The process works as follows. At time
1, you can select either “Arm 1,” whose payoff
is a random variable, or you can select “Arm
2,” whose payoff is some fixed and known λ.
You will face the same choice at time 2.

For the moment, let’s assume that the pay-
off of Arm 1 is N(θ,1) and your prior on θ is
N(µ, ρ2), ρ2 > 0

What is the difference in the decisions you
would make at times 1 and 2?

At time 2 it always makes sense to be myopic.

What is a strategy in this case? A mapping
from a history of observations to an action.
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Let’s find the best strategy that chooses arm
2 at time 1.

At Time 2, what should we choose? Arm 1 if
µ > λ, Arm 2 otherwise. Then the value of the
process under this strategy is λ+ max(λ, µ)

Here’s something interesting. If it makes sense
to choose Arm 2 at Time 1 then it must make
sense to choose Arm 2 at Time 2 as well.
Why? We’ll show this in a somewhat more
general framework a little bit later...we don’t
actually need it right now, though

Now the best strategy that chooses Arm 1 at
Time 1

First, the update of the mean of my belief
about Arm 1 given that I observe X1 when
I pull it is:

µ+ ρ2X1

1 + ρ2



So what will I do at Time 2? I’ll choose Arm

2 iff

µ+ ρ2X1

1 + ρ2
≤ λ

So now what do these two things taken to-

gether tell us about what action to take at

Time 1? Well, the value of pulling Arm 1 is:

µ+ E[max(
µ+ ρ2X1

1 + ρ2
, λ)]

The value of pulling Arm 2 is:

λ+ max(λ, µ)

We only need to compare with 2λ in this case

because the second value (µ + λ) could then

be achieved by pulling Arm 1 at Time 1 and

then Arm 2 at Time 2.



So in order to choose Arm 1, we need:

µ+ E[max(
µ+ ρ2X1

1 + ρ2
, λ)] > 2λ

⇒ µ− λ+ E[max(
µ+ ρ2X1

1 + ρ2
− λ,0)] > 0

We won’t go into the details of solving this,
but it is doable, and in fact, the solution is of
the following form.

Let

t = (λ− µ)

√
1 + ρ2

ρ2

Ψ(t) =
∫ ∞
t

(x− t)N(x)dx

= N(t)− t(1−Φ(t))

So basically the breakeven point will come for
some t0 where Ψ(t0) = t0. Numerically t0 '
0.2760



Then, if t < t0, at Time 1, play Arm 1, oth-

erwise play Arm 2. Then update your beliefs,

and at Time 2, only play Arm 1 if the mean of

your new belief is > λ.

What can we say about µ and λ?

Well, if µ > λ then it always makes sense to

play Arm 1. But if µ is smaller, it depends on p.

In fact, note that
√

1+ρ2

ρ2 → 0 as ρ → ∞. This

means that for sufficiently large uncertainty it

always makes sense to play the uncertain Arm

at Time 1!



Bandit Problems: A More General
Description

You can have many arms. In general we’ll as-

sume they’re independent and work with a few

different reward structures. Each arm can also

be thought of as having a Markovian structure,

but we won’t worry about that complication for

the most part.

What is the problem with just thinking about

states and using value functions? Our posteri-

ors have to somehow be folded into the state

description. This is not necessarily easy.

We’ll see some remarkable things in the multi-

armed bandit case for independent arms, but

first let’s look at some very simple approaches.

3



ε-greedy Methods

Greedy methods: Pull the arm with the best

historical reward that has been achieved so far

Problem: may not learn enough about arms

that initially seem suboptimal

ε-greedy: with probability ε, pull an arm uni-

formly at random

Flow utility vs. asymptotic learning for different

ε values

Can also use ε declining over time to try and

make the best of all worlds

Other methods: use an exploration schedule,

and then always exploit after that.
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ε-soft methods:

exp(Qt(a)/τ)∑
b exp(Qt(b)/τ

)

where τ is the temperature

These methods are surprisingly effective in gen-

eral and in real-world problems



Two Arms, One Known

Let Arm 2 be the known arm. Then, if it is

optimal to pull Arm 2 at any point, then it is

optimal to keep pulling Arm 2 from then on

(this assumes a regular discount sequence).

Intuition: we don’t get any new information

once we start pulling the known arm

Therefore, our expected reward is always at

least as great later on in the process as it is at

the beginning of the process.

An observation: this isn’t always true with all

unknown arms (but the last reward in a finite

horizon case is larger in expectation).

Regular discount sequences: let’s think about

geometric (exponential) discounting
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What does the observation above about keep-
ing on pulling Arm 2 tell us?

The form of the optimal strategy must be ei-
ther that you always pull Arm 2, or you keep
pulling Arm 1 until some time, then switch to
Arm 2, and then keep pulling Arm 2 forever!

Important theorem: let’s do it for Bernoulli
arms, although it can be generalized to other
distributions.

For any regular discount sequence, and each
distribution F on the parameter of the un-
known arm, there exists a unique Λ(F ) ∈ [0,1]
such that Arm 1 is optimal initially iff λ ≤ Λ(F )
and Arm 2 is optimal otherwise

Λ(F ) = max
τ :τ(Φ)=1

Eτ
∑M
m=1α

m−1Xm|F
Eτ

∑M
m=1α

m−1

where M is the stage at which Arm 1 is used for
the last time (possibly +∞) before switching
to Arm 2 when following strategy τ .



Optimal Policies for Multi-Armed
Bandits

The celebrated theorem of Gittins and Jones:

for geometric discounting and n independent

arms, we can solve the problem by treating it

as n different 2-armed Bandits, and computing

the dynamic allocation indices for each of the

known arms in the 2-armed bandits. Then at

any time pick the arm with highest index. The

really cool thing: the allocation index for each

arm only depends on that arm!

However, this only holds for the geometric dis-

count sequence!

Exercise: consider a 2-period 2-armed Bandit

with Bernoulli arms:

F1 : (1/2)δ0 + (1/2)δ1

F2 : (5/7)δ1/2 + (2/7)δ1
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2 is preferred to 1. But if you introduce a third,

known arm with probability anywhere between

2/3 and 31/46, Arm 1 is suddenly optimal at

Time 1! This violates the independence we

were talking about (and the two period dis-

count sequence is (1,1,0,0, . . .), which is reg-

ular

Style of the optimal strategy: keep playing an

arm with highest index until it becomes lower

than the second highest. Then switch to the

second highest, and so on...


