
About this class

The next two lectures are really coming from
a statistics perspective, but we’re going to dis-
cover how useful it is for the problems we are
interested in!

Chapter 7 of Casella and Berger is a good ref-
erence for this material (most of this lecture is
based on that chapter).

Statistics thinks largely about samples, partic-
ularly random samples.

Random variables (Xi): Functions from sam-
ple space to R

Realized values of random variables: xi

Random sample of size n from population f(x):
X1, . . . , Xn are independent and identically dis-
tributed (iid) random variables with pdf or pmf
f(x)
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Point Estimators

Let’s say we have a stream of values all coming

from the same population (no changing with

time): x1, . . . , xn

Suppose the population is described by a pdf

f(x|θ)

We want to estimate θ

An estimator is a function of the sample:

X1, . . . , Xn.

An estimate is a number, which is a function

of the realized values x1, . . . , xn

Think of an estimator as an algorithm that

produces estimates when given its inputs

Can you think of a good estimator for the pop-

ulation mean?
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Maximum Likelihood

Method for deriving estimators.

Let x denote a realized random sample

Likelihood function:

L(θ|x) = L(θ|x1, . . . , xn) =
n∏

i=1

f(xi|θ)

If X is discrete, L(θ|x) = Pθ(X = x)

Intuitively, if L(θ1|x) > L(θ2|x) then θ1 is in

some ways a more plausible value for θ than is

θ2

Can be generalized to multiple parameters

θ1, . . . , θn
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Maximum Likelihood

For a sample x = x1, . . . , xn let θ̂(x) be the pa-

rameter value at which L(θ|x) attains its max-

imum (as a function of θ, with x held fixed).

Then θ̂(x) is the maximum likelihood estimate

of θ based on the realized sample x. θ̂(X)

is the maximum likelihood estimator based on

the sample X.

Note that the MLE has the same range as the

parameter, by definition

Potential problems

• How to find and verify the maximum of the

function?

• Numerical sensitivity
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Differentiable Likelihood Functions

Possible candidates are the values of θ1, . . . θk

that solve:

∂

∂θi
L(θ|x) = 0, (i = 1, . . . , k)

Must check whether any such value of θ is in

fact a global maximum (could be a minimum,

an inflection point, a local maximum, and the

boundary needs to be checked).
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Normal MLE

Suppose X1, . . . , Xn are iid N(θ,1)

L(θ|x) =
n∏

i=1

1√
2π

e−
1
2(xi−θ)2

Standard trick: work with the log likelihood

logL(θ|x) =
1√
2π

n∑
i=1

−
1

2
(xi − θ)2

Take the derivative, etc...

d

dθ
logL(θ|x) =

1√
2π

n∑
i=1

(xi − θ)
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d

dθ
logL(θ|x) = 0

⇒
n∑

i=1

(xi − θ) = 0

The only zero of this is for θ̂ = x

To show that this is, in fact, the maximum

likelihood estimate:

1. Show it is a maximum:

d2

dθ2
logL(θ|x) =

1√
2π

(−n) < 0

2. Unique interior extrememum, and a maxi-

mum – therefore a global maximum



Bernoulli MLE

Let X1, . . . , Xn be iid Bernoulli(p)

L(p|x) =
n∏

i=1

pxi(1− p)1−xi

= py(1− p)n−y

where y =
∑

xi

logL(p|x) = y log p + (n− y) log(1− p)

If 0 < y < n

d

dp
logL(p|x) = y

1

p
− (n− y)

1

1− p

d

dp
logL(p|x) = 0 ⇒

1− p

p
=

n− y

y
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Then p̂ = y
n

Verify the maximum, and consider separately

the cases where y = 0 (log likelihood is n log(1−
p) and y = n (log likelihood is n log p)



Binomial MLE, Unknown Number
of Trials

Population is binomial (k, p) with known p and

unknown k

L(k|x, p) =
n∏

i=1

( k

xi

)
pxi(1− p)k−xi

Maximizing by the differentiation approach is

tricky

k ≥ max
i

xi

L(k|x, p) > L(k − 1|x, p)

L(k|x, p) > L(k + 1|x, p)
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L(k|x, p)

L(k − 1|x, p)
=

(k(1− p))n∏n
i=1(k − xi)

Conditions for a maximum are:

(k(1− p))n ≥
n∏

i=1

(k − xi)

and

((k + 1)(1− p))n <
n∏

i=1

(k + 1− xi)

Solution: Solve the equation:

(1− p)n =
n∏

i=1

(1− xiz)

for 0 ≤ z ≤ maxi xi. Call this ẑ

k̂ is the largest integer equal to or less than

1/ẑ



MLE Instability

Olkin, Petkau and Zidek [JASA 1981] give the
following example.

Suppose you are estimating the parameters for
a binomial (k, p) distribution (both k and p un-
known) and have the following data:

16,18,22,25,27

Turns out the ML estimate of k is 99.

Question – what do you think the ML estimate
of p is?

But what if the data were slightly noisy, and
the 27 should have been a 28?

The ML estimate of k is now 190!

What’s going on here? Most likely the likeli-
hood function is very flat in the neighborhood
of the maximum
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Bayesian Estimators

Classical vs. Bayesian approach to statistics

Classical: θ is an unknown but fixed parameter

Bayesian: θ is a quantity described by a distri-

bution

Prior distribution describes ones beliefs about

θ before any data is seen

A sample is taken and the prior is ten updated

to take the data into account, leading to a

posterior distribution

Let the prior be π(θ) and the sampling distri-

bution be f(x|θ). Then the posterior is given

by

π(θ|x) = f(x|θ)π(θ)/m(x)
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Where m(x) is the marginal distribution of x,∫
f(x|θ)π(θ)dθ

The posterior distribution can be used to make

statements about θ, but it’s still a distribution!

For example, could use the mean of this dis-

tribution as a point estimate of θ.



Binomial Bayes Estimation

Let X1, . . . , Xn be iid Bernoulli(p)

Let Y =
∑

Xi

Suppose the prior distribution on p is beta(α, β)

(really, I should subscript these, but for nota-

tional convenience I won’t...)

Brief recap on the beta distribution – family of

continuous distributions defined on [0,1] and

governed by the two shape parameters.

A picture from wikipedia...
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Probability density function

Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1

Nice fact: Mean is α
α+β



f(y|p) =
(n

y

)
py(1− p)n−y

π(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1

f(y) =
∫ 1

0
f(y|p)f(p)dp

=
∫ 1

0

(n

y

) Γ(α + β)

Γ(α)Γ(β)
py+α−1(1− p)n−y+β−1dp

=
(n

y

) Γ(α + β)

Γ(α)Γ(β)

Γ(y + α)Γ(n− y + β)

Γ(n + α + β)

Then the posterior distribution is given by

f(y|p)π(p)

f(y)

=
Γ(n + α + β)

Γ(y + α)Γ(n− y + β)
py+α−1(1−p)n−y+β−1

which is Beta(y + α, n− y + β) !



Bayes estimate combines prior information with

the data.

If we want to use a single number, we could use

the mean of the posterior distribution, given by
y+α

n+α+β



Normal MLE when µ and σ Are
Both Unknown

logL(θ, σ2|x) = −
n

2
log(2π)−

n

2
logσ2−

1

2

n∑
i=1

(xi − θ)2

σ2

Partial derivatives:

∂

∂θ
logL(θ, σ2|x) =

1

σ2

n∑
i=1

(xi − θ)

∂

∂σ2
logL(θ, σ2|x) = −

n

2σ2
+

1

2σ4

n∑
i=1

(xi− θ)2

Setting to 0 and solving gives us:

θ̂ = x

σ̂2 =
1

n

n∑
i=1

(xi − x)2
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