
About this class

We’ll talk about the concepts of mean

squared error, bias, and variance, and discuss

the tradeoffs

We’ll discuss linear regression and show how

to estimate the parameters of a linear model
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Evaluating Estimators

Statistical evaluation – ways of choosing with-

out access to test data

Mean Squared Error (MSE): The MSE of an

estimator W of a parameter θ is the function

of θ defined by Eθ(W − θ)2

Alternatives?

Bias/Variance decomposition:

E(W − θ)2 =

E[W2] + θ2− 2θE[W ] + (E[W ])2− (E[W ])2

= (Bias W )2 + E[W2]− (E[W ])2

= (Var W ) + (Bias W )2
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where

Bias W = EθW − θ

Unbiased estimators are good at controlling

bias! An unbiased estimator has MSE equal

to its variance



Estimators for the Normal
Distribution

Let X1, . . . , Xn be iid N(µ, σ2)

Unbiased estimator for mean is sample mean

Unbiased estimator for variance is the sample
variance:

S2 =
1

n− 1

n∑
i=1

(Xi −X)2

Proof:

E[S2] = E[
1

n− 1
(

n∑
i=1

(Xi −X)2)

=
1

n− 1
[E(

n∑
i=1

X2
i ) + nX

2 − 2X
n∑

i=1

Xi]

=
1

n− 1
E(

n∑
i=1

X2
i − nX

2)
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=
1

n− 1
(nEX2

1 − nEX
2)

Now we need to use a couple of additional
facts:

EX2
1 − (EX1)

2 = σ2

and

EX
2 − (EX)2 = σ2/n

(This second is basically the definition of stan-
dard error)

To show the second, here’s a lemma:

Var
n∑

i=1

g(Xi) = nVarg(X1)

Proof:

Var
n∑

i=1

g(Xi) = E[
n∑

i=1

g(Xi)−E(
n∑

i=1

g(Xi))]
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= E[
n∑

i=1

(g(Xi)− Eg(Xi))]
2

If we expand this, there are n terms of the form

(g(Xi)− Eg(Xi))
2

The expectation of this term is Var g(Xi). There-

fore, for n of them we get nVar g(X1).

What about the other terms? They are all of

the form:

(g(Xi)− Eg(Xi))(g(Xj)− Eg(Xj))

with i 6= j The expectation of this is the co-

variance of Xi and Xj, which is 0 from inde-

pendence.

Now we plug back into the expression for E[S2]

and find:

E[S2] =
1

n− 1
(nEX2

1 − nEX
2)



=
1

n− 1
(n(σ2 + µ2)− n(

σ2

n
+ µ2))

= σ2



MSEs for Estimators for the
Normal Distribution

Unbiased estimator for the mean µ is X Unbi-
ased estimator for the variance σ2 is S2

MSEs for these estimators are:

E(X − µ)2 = Var X =
σ2

n

E(S2 − σ2)2 = Var S2 =
2σ4

n− 1

MLE for the variance is σ̂2 = 1
n

∑n
i=1(Xi −

X)2 = n−1
n S2

Eσ̂2 = E(
n− 1

n
S2) = (

n− 1

n
)σ2

Var σ̂2 = Var (
n− 1

n
S2)
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= (
n− 1

n
)2Var S2

= (
n− 1

n
)2

2σ4

n− 1

=
2(n− 1)σ4

n2

MSE, using the bias/variance decomposition

E(σ̂2− σ2)2 =
2(n− 1)σ4

n2
+(

n− 1

n
σ2− σ2)2

=
2n− 1

n2
σ4

Which is less than

2σ4

n− 1



Bias/Variance Tradeoff in General

Keep in mind: MSE is not the last word. Should

we be comfortable using biased estimators?

Why are they biased?

Is MSE reasonable for scale parameters (as op-

posed to location ones?) – forgives underesti-

mation...

Hypothesis space too simple? High bias, low

variance

Hypothesis space too complex? Low bias, high

variance
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Regression

Statistics: describing data, inferring conclu-

sions

Machine learning: predicting future data (out-

of-sample)

What would be a reasonable thing to do in the

following two cases (diagrams)?

Assumption for linear regression: data can be

modeled by

yi = α + βxi + εi

First algorithmic question for us: how to find

α and β ?
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Least Squares

Define x and y as usual from our sample data.

Now define:

Sxx =
n∑

i=1

(xi − x)2

Syy =
n∑

i=1

(yi − y)2

Sxy =
n∑

i=1

(xi − x)(yi − y)

Let’s fit a line to the data as best as we can.

How do we define this? Residual sum of squares

(RSS)

n∑
i=1

(yi − (c + dxi))
2
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Now, find a and b, estimators of α and β, such

that:

min
c,d

n∑
i=1

(yi− (c+dxi))
2 =

n∑
i=1

(yi− (a+ bxi))
2

For any fixed value of d, the minimizing value

of c can be found as follows.
n∑

i=1

(yi − (c + dxi))
2 =

n∑
i=1

((yi − dxi)− c)2

Turns out the right side is minimized at

c =
1

n

n∑
i=1

(yi − dxi)

= y − dx

Why?

min
a

n∑
i=1

(xi − a)2 = min
a

n∑
i=1

(xi − x + x− a)2



=
n∑

i=1

(xi−x)2+2
n∑

i=1

(xi−x)(x−a)
n∑

i=1

(x−a)2

Second term drops out, basically giving us our

result

For a given value of d, the minimum value of

RSS is then
n∑

i=1

((yi − dxi)− (y − dx))2

=
n∑

i=1

((yi − y)− d(xi − x))2

= Syy − 2dSxy + d2Sxx

Take the derivative with respect to d and set

to 0

−2Sxy + 2dSxx = 0

⇒ d =
Sxy

Sxx



We’ll get different lines if we regress x on y!

(exercise)



A Statistical Method: BLUE

Assumptions:

EYi = α + βxi

Var Yi = σ2

Second one implies that variance is the same
for all data points No assumption needed on
the distribution of the Yi

BLUE: Best Linear Unbiased Estimator

Linear: estimator of the form
∑n

i=1 diYi

Unbiased: estimator must satisfy E
∑n

i=1 diYi =
β

Therefore β =
∑n

i=1 diE[Yi]

=
n∑

i=1

di(α + βxi)
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= α
n∑

i=1

di + β
n∑

i=1

dixi

Must hold for all α and β. This is true iff∑n
i=1 di = 0 and

∑n
i=1 dixi = 1

Best: Smallest variance (Equal to MSE for un-

biased estimators)

Var
n∑

i=1

diYi =
n∑

i=1

d2
i Var Yi

=
n∑

i=1

d2
i σ2 = σ2

n∑
i=1

d2
i

The BLUE is then defined by constants di that

minimize
∑n

i=1 d2
i while satisfying the constraints

derived above.

It turns out that the choices di = xi−x
Sxx

are the

choices that do this, which gives us b =
Sxy
Sxx



The advantage of working under statistically

explicit assumptions is we also get statistical

knowledge about our estimator

Var b = σ2
n∑

i=1

d2
i =

σ2

Sxx

If you can choose the xi, you can design the

experiment to try and minimize the variance!

Similar analysis shows that the BLUE of α is

the same a as in least squares


