
About this class

Separating hyperplanes (again)

The perceptron algorithm

The perceptron convergence theorem

Maximum margin classifiers

1

The Perceptron

Weight vector W =< w0, w1, . . . , wn > such

that for an input x1, . . . xn, predict Y = 1 if

w0 +
∑n

i=1 wixi > 0 and Y = −1 (equivalently

0, but it’s easier to think about it this way)

otherwise

For notational convenience add an additional

imaginary x0 = 1 for every input so now the

classifier is sgn(W.X)

Perceptron update rule:

wi ← wi + ∆wi

where

∆wi = η(Y −W.X)xi

For the perceptron criterion, η does not matter

2

Decision surface is a hyperplane. w0 affects

the distance from origin, but not the angle.

The rest of w is perpendicular to the separating

hyperplane

Similar to logistic regression – historically very

important!

The Perceptron Convergence
Theorem

Using capital letters for the entire vector, let

R be maxt ||Xt||

Suppose we repeatedly iterate through the data

and perform the perceptron criterion update

Suppose the data are linearly separable. That

is

∃W ∗Yt ∗ (W ∗.Xt) = 1

The perceptron algorithm will converge to a

linear separator

We have Wt+1 = Wt + (Xt.Yt)

3

After running the algorithm for some time,

let’s say that input (Xn, Yn) has been misclas-

sified τn times

W =
∑
n

τnXnYn

⇒W ∗T .W =
∑
n

τnW ∗TXnYn

≥ τ min
n

W ∗TXnYn

where τ is now the total number of mistakes

made. So we have established the bounded-

ness below of the projection of W on W ∗

Now the next step is to show boundedness

above of W after τ errors

||Wτ+1||2 = ||W τ + XnYn||2

= ||Wn||2 + 2Yn(Wn.X) + ||Xn||2

Since we made a mistake, Yn(Wn.X) < 0, and
we have ||Xn||2 < R2, so

||Wτ+1||2 < ||Wn||2 + R2

Therefore, after τ updates

||W ||2 ≤ τR2

So the length of W increases no faster than
√

τ ,
but it increases at least as fast as τ . Therefore,
it must stop changing for sufficiently large τ

Things to think about:

1. Decrease in error is not monotonic!

2. Basic generalization result – this algorithm
will converge after a finite number of er-
rors. Therefore it must be able to general-
ize (assuming concept is in the hypothesis
space)

Maximizing the Margin

Picture of large and small margin hyperplanes

Intuition: large margin condition acts as a reg-

ularizer and should generalize better

The Support Vector Machine (SVM) makes

this formal. Not only that, it is amenable to

the kernel trick which will allow us to get much

greater representational power!

4

Deriving the SVM

(Derivation based on Ryan Rifkin’s slides in

MIT 9.520 from Spring 2003)

Assume we classify a point x as sgn(w.x)

Let x be a datapoint on the margin, and z the

point on the separating hyperplane closest to

x

We want to maximize ||x− z||

For some k (assumed positive)

w.x = k

w.z = 0

⇒ w.(x− z) = k

5

Since x− z is parallel to w (both perpendicular
to the separating hyperplane)

k = w.(x− z)

⇒ k = ||w||||x− z||

⇒ ||x− z|| =
k

||w||

So now, maximizing ||x − z|| is equivalent to
minimizing ||w||

We can fix k = 1 (this is just a rescaling)

Now we have an optimization problem:

min
w∈Rn

||w||2

subject to:

yi(w.xi) ≥ 1, i = 1, . . . , l

Can be solved using quadratic programming

Think about this expression in terms of train-

ing set error and inductive bias!

Typically we also use a bias term to shift the

hyperplane around (so it doesn’t have to pass

through the origin) Now f(x) = sgn(w.x + b)

When a Separating Hyperplane
Does Not Exist

We introduce slack variables. The new opti-

mization problem becomes

min
w∈Rn,ξ∈Rl

C
l∑

i=1

ξi +
1

2
||w||2

subject to:

yi(w.xi + b) ≥ 1− ξi, i = 1, . . . , l

ξi ≥ 0, i = 1, . . . , l

Now we are trading the error off against the

margin

6

The Dual Formulation

max
α∈Rl

l∑
i=1

αi −
∑
i,j

αiαjyiyj(xi.xj)

subject to:

l∑
i=1

yiαi = 0

0 ≤ αi ≤ C, i = 1, . . . , l

The hypothesis is then:

f(x) = sgn(
l∑

i=1

αiyi(x.xi))

Sparsity: it turns out that:

yif(xi) > 1⇒ αi = 0

yif(xi) < 1⇒ αi = C

7

This allows for more efficient solution of the

QP than we could get otherwise

The Kernel Trick

The really nice thing: optimization depends

only on the dot product between examples.

An example from Russell & Norvig

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2

x1

Now suppose we go from representation x =<

x1, x2 > to representation F (x) =< x2
1, x2

2,
√

2x1x2 >

8

0
0.5

1
1.5

2x1
2 0.5

1
1.5

2
2.5

x2
2

-3
-2
-1
0
1
2
3

!2x1x2

Now F (xi).F (xj) = (xi.xj)
2

We don’t need to compute the actual feature

representation in the higher dimensional space,

because of Mercer’s theorem.

For a Mercer Kernel K, the dot product of

F (xi) and F (xj) is given by K(xi, xj).

What is a Mercer kernel? Continuous, sym-

metric, and positive definite

Positive definiteness: for any m-size subset of

the input space, the matrix K where Kij =

K(Xi, Xj) is positive definite

Remember positive definiteness: for all non-

zero vectors z, zTKz > 0

Allows us to work with very high-dimensional

spaces!

Examples:

1. Polynomial: K(Xi, Xj) = (1 + xi.xj)
d (fea-

ture space is exponential in d!)

2. Gaussian: e
−||xi−xJ ||

2

2σ2 (infinite dimensional

feature space!)

3. String kernels, protein kernels!

How do we choose which kernel and which λ

to use? (The first could be harder!)

Selecting the Best Hypothesis

Based on notes from Poggio, Mukherjee and

Rifkin

Define the performance of a hypothesis by a

loss function V

Commonly used for regression: V (f(x), y) =

(f(x)− y)2

Could use absolute value: V (f(x), y) = |f(x)−
y|

What about classification? 0-1 loss: V (f(x), y) =

I[y = f(x)]

Hinge loss: V (f(x), y) = (1− y.f(x))+

Hypothesis space: space of functions that we

search
9

Expected error of a hypothesis: Expected error

on a sample drawn from the underlying (un-

known) distribution

I[f] =
∫

V (f(x), y)dµ(x, y)

In discrete terms we would replace with a sum

and µ with P

Empirical error, or empirical risk, is the average

loss over the training set

IS[f] =
1

l

∑
V (f(xi), yi)

Empirical risk minimization: find the hypothe-

sis in the hypothesis space that minimizes the

empirical risk

min
f∈H

1

n

n∑
i=1

V (f(xi), yi)

For most hypothesis spaces, ERM is an ill-

posed problem. A problem is ill-posed if it is

not well-posed. A problem is well-posed if its

solution exists, is unique, and depends contin-

uously on the data

Regularization restores well-posedness. Ivanov

regularization directly constrains the hypothe-

sis space, and Tikhonov regularization imposes

a penalty on hypothesis complexity

Ivanov regularization:

min
f∈H

1

n

n∑
i=1

V (f(xi), yi) subject to ω(f) ≤ τ

Tikhonov regularization:

min
f∈H

1

n

n∑
i=1

V (f(xi), yi) + λω(f)

ω is the regularization or smoothness func-

tional. The mathematical machinery for defin-

ing this is complex, and we won’t get into it

much more, but the interesting thing is that

if we use the hinge loss and the linear kernel,

the SVM comes out of solving the Tikhonov

regularization problem!

Meaning of using an unregularized bias term?

Punish function complexity but not an arbitrary

translation of the origin

However, in the case of SVMs, the answer will

end up being different if we add a fictional “1”

to each example, because now we punish the

weight we put on it!

Generalization Bounds

Important concepts of error:

1. Sample (estimation) error: difference be-

tween hypothesis we find in H and the best

hypothesis in H

2. Approximation error: difference between best

hypothesis in H and the true function in

some other space T

3. Generalization error: difference between hy-

pothesis we find in H and the true function

in T , which is the sum of the two above

Tradeoff: making H bigger makes the approx-

imation error smaller, but the estimation error

larger

10

