Computer Science 6100/4100: Machine Learning

RPI, Fall 2007 Instructor: Sanmay Das

What is Machine Learning?

- "Enabling computers to learn from data"
- Supervised learning: generalizing from seen data to unseen
- Unsupervised learning: Finding patterns in input data
- Reinforcement learning: learning how to act

Where Does This Fit in AI?

- What is the goal of Al?
 - Two dichotomies: thinking/acting and humans/rationality (Russell & Norvig [RN])
- Turing test: acting like humans (restricted domain)
- Alternative goal: acting rationally?

Rational Behavior

- [RN]: Maximize goal attainment
- Easier when we specify utility functions
- Perfect rationality is problematic:
 - Computational limitations
 - Definition of optimality

Intelligent Agents [RN]

- Agents include humans and artificial agents
- Agent function maps percept histories to actions $f: P* \to A$
- Agent program runs on the physical architecture to produce *f*

Human Beings and Humanoid Robots

- Environment: ?
- Sensors/Percepts: ?
- Actuators/Actions: ?
- Performance measure: ?

A Trading Agent

- Environment: ?
- Sensors: ?
- Percepts: ?
- Actuators: ?
- Actions: ?
- Performance measure: ?

Supervised Learning

- Induction
- Simplest form: true function
 - $f:X\to Y$
- You are given pairs generated from f $(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)$
- Learn h close to f

Learning a Hypothesis

- How do we learn *h*? Algorithms from machine learning and statistics
- What can we prove about *h*? Statistical/ computational learning theory
- Different learning algorithms have different inductive biases
- Example...

Hypothesis Spaces

- Examples: decision trees, linear classifiers
- Finding a hypothesis can be thought of as search in the hypothesis space
- Hypothesis space is part of the inductive bias

Unsupervised Learning

- No explicit outputs
- Build a model of the inputs in some way
 - Probabilistic model of feature distribution
 - Clustering

Reinforcement Learning

- Agent interacts with the world
- Receives feedback in the form of rewards (or costs)
- Must choose which actions to take
- Major issues:
 - Delayed reward/credit assignment
 - Exploration/Exploitation

Elements of RL

- Sutton & Barto [SB]:
 - Policy
 - Reward function
 - Value function
 - Model?

Markov Decision Processes (Problems)

- $\bullet\,$ State space: S
- Initial state: S_0
- Action space: A
- Transition model: $T: S \times A \rightarrow S \times [0, 1]$
- Reward function: $R:S \to \mathbb{R}$

Utility Theory

- Going from the real-world to sensible reward functions
- Parallelism: in economics, utility theory is useful in abstracting over preferences
- Thought question: which of these two options would you prefer?

Learning in Economics

- Agents that participate in markets are assumed to be rational
- This means they solve interesting learning and decision-making problems
- Change the focus to understanding how the interaction of rational players leads to system-wide dynamics...
 - Two restaurants
 - Kyle's model

Syllabus and Course Policies

• Refer to handout...

A Note on Math

- Calculus
- Ability to play with matrices
- Probability!
 - Uniform, Gaussian distributions, Bayes rule
 - Let's do a quick problem...

Problem I

• MBC Instruments has designed a new test for Horrible Disease. This test is correct with 99% accuracy. I in 10000 people in the general population has the disease. SBC took the test and it came out positive. Is it more likely that SBC has the disease or doesn't?

Statistics

• Difference between standard deviation and standard error?