
What is online learning?

Sample data are arranged in a sequence.

Each time we get a new input, the algorithm
tries to predict the corresponding output.

As the number of seen samples increases, hope-
fully the predictions improve.
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Assets

1. does not require storing all data samples

2. more plausible model for sequential prob-
lems, especially those that involve decision-
making

3. typically fast algorithms

4. it is possible to give formal guarantees not

assuming probabilistic hypotheses (mistake
bounds)
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Problems

• Performance can be worse than best batch

algorithms

• Generalization bounds always require some
assumption on the generation of sample
data
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Online setting

Sequence of sample data z1, z2, . . . , zn.

Each sample is an input-output couple zi =
(xi, yi).

xi ∈ X ⊂ Rd, yi ∈ Y ⊂ R.

In the classification case Y = {+1,−1}

Estimators fi : X → Y constructed using the
first i data samples.
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Online setting (cont.)

• initialization f0

• for i = 1,2, . . . , n

• receive xi

• predict fi−1(xi)

• receive yi

• update (fi−1, zi)→ fi

Note: storing efficiently fi−1 may require much
less memory than storing all previous samples
z1, z2, . . . , zi−1.
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Goals

Batch learning: reducing expected loss

I[fn] = EzV (fn(x), y)

Online learning: reducing cumulative loss

n∑

i=1
V (fi−1(xi), yi)
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The Experts Framework

We will focus on the classification case.

Suppose we have a pool of prediction strate-
gies, called experts. Denote by E = {E1, . . . , Ek}.

Each expert predicts yi based on xi.

We want to combine these experts to produce
a single master algorithm for classification and
prove bounds on how much worse it is than
the best expert.
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The Halving Algorithm∗

Suppose all the experts are functions (their
predictions for a point in the space do not
change over time) and at least one of them
is consistent with the data.

At each step, predict what the majority of ex-
perts that have not made a mistake so far
would predict.

Note that all inconsistent experts get thrown
away!

Maximum of log2(|E|) errors.

But what if there is no consistent function in
the pool? (Noise in the data, limited pool,
etc.)
∗Barzdin and Freivald, On the prediction of general re-
cursive functions, 1972, Littlestone and Warmuth, The
Weighted Majority Algorithm, 1994
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The Weighted Majority Algorithm∗

Associate a weight wi with every expert. Ini-
tialize all weights to 1.

At example t:

q−1 =
|E|∑

i=1
wiI[Ei predicted yt = −1]

q1 =
|E|∑

i=1
wiI[Ei predicted yt = 1]

Predict yt = 1 if q1 > q−1, else predict yt = −1

If the prediction is wrong, multiply the weights
of each expert that made a wrong prediction
by 0 ≤ β < 1.

Note that for β = 0 we get the halving algo-
rithm.
∗Littlestone and Warmuth, 1994
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Mistake Bound for WM

For some example t let Wt =
∑|E|

i=1 wi = q−1+q1

Then when a mistake occurs Wt+1 ≤ uWt where
u < 1

Therefore W0um ≥ Wn

Or m ≤ log(W0/Wn)
log(1/u)

Then m ≤ log(W0/Wn)
log(2/(1+β)) (setting u = 1+β

2 )
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Mistake Bound for WM (contd.)

Why? Because when a mistake is made, the
ratio of total weight after the trial to total
weight before the trial is at most (1 + β)/2.

W.L.o.G. assume WM predicted −1 and the
true outcome was +1. Then new weight after
trial is:

βq−1+q1 ≤ βq−1+q1+
1−β
2 (q−1−q1) = 1+β

2 (q−1+
q1).

The main theorem (Littlestone & Warmuth):
Assume mi is the number of mistakes made by
the ith expert on a sequence of n instances and
that |E| = k. Then the WM algorithm makes
at most the following number of mistakes:

log(k) + mi log(1/β)

log(2/(1 + β))

11

Big fact: Ignoring leading constants, the
number of errors of the pooled predictor is
bounded by the sum of the number of errors
of the best expert in the pool and the log of
the number of experts!



Finishing the Proof

W0 = k and Wn ≥ βmi

log(W0/Wn) = log(W0)− log(Wn)

log(Wn) > mi logβ, so − log(Wn) < mi log(1/β)

Therefore log(W0)−log(Wn) < log k+mi log(1/β)
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