A Whirlwind Tour of Game Theory

(Mostly from Fudenberg & Tirole)

Players choose actions, receive rewards based on their own actions and those of the other players.

Example, the Prisoner's Dilemma:

	Cooperate	Defect
Cooperate	+3,+3	0,+5
Defect	+5,0	+1, +1

Strategies and Nash Equilibrium

A **strategy** is a specification for how to play the game for a player. A **pure strategy** defines, for every possible choice a player could make, which action the player picks. A **mixed strategy** is a probability distribution over strategies.

A Nash equilibrium is a profile of strategies for all players such that each player's strategy is an optimal response to the other players' strategies. Formally, a mixed-strategy profile σ_* is a Nash equilibrium if for all players *i*:

 $u^{i}(\sigma_{*}^{i},\sigma_{*}^{-i}) \geq u^{i}(s^{i},\sigma_{*}^{-i}) \forall s^{i} \in S^{i}$

Nash equilibrium of Prisoner's Dilemma: Both players defect!

Matching Pennies

	Н	Т
Η	+1, -1	-1, +1
Т	-1, +1	+1, -1

No pure strategy equilibria

Nash equilibrium: Both players randomize half and half between actions.

More on Equilibria

Dominated strategies: Strategy s_i (strictly) dominates strategy s'_i if, for all possible strategy combinations of opponents, s_i yields a (strictly) higher payoff than s'_i to player i.

Iterated elimination of strictly dominated strategies: Eliminate all strategies which are dominated, relative to opponents' strategies which have not yet been eliminated.

If iterated elimination of strictly dominated strategies yields a unique strategy *n*-tuple, then this strategy *n*-tuple is the unique Nash equilibrium (and it is strict).

Every Nash equilibrium survives iterated elimination of strictly dominated strategies.

Multiple Equilibria

A coordination game:

	L	R
U	9,9	0,8
D	8,0	7,7

U, L and D, R are both Nash equilibria. What would be reasonable to play? With and with-out coordination?

While U, L is pareto-dominant, playing D and R are "safer" for the row and column players respectively...

Existence of Equilibria

Nash's theorem, translated: every game with a finite number of actions for each player where each player's utilities are consistent with the (previously discussed) axioms of utility theory has an equilibrium in mixed strategies.

Idea 1: Reaction correspondences. Player *i*'s reaction correspondence r_i maps each strategy profile σ to the set of mixed strategies that maximize player *i*'s payoff when her opponents play σ_{-i} . Note that r_i depends only on σ_{-i} , so we don't really need all of σ , but it will be useful to think of it this way. Let r be the Cartesian product of all r_i . A fixed point of r is a σ such that $\sigma \in r(\sigma)$, so that for each player, $\sigma_i \in r_i(\sigma)$. Thus a fixed point of r is a Nash equilibrium.

Kakutani's FP theorem says that the following are sufficient conditions for $r: \Sigma \to \Sigma$ to have a FP.

1. Σ is a compact, convex, nonempty subset of a finite-dimensional Euclidean space.

Satisfied, because it's a simplex

2. $r(\sigma)$ is nonempty for all σ

Each player's playoffs are linear, and therefore continuous, in her own mixed strategy. Continuous functions on compact sets attain maxima.

3. $r(\sigma)$ is convex for all σ

Suppose not. Then $\exists \sigma', \sigma''$ such that $\lambda \sigma' + (1-\lambda)\sigma'' \notin r(\sigma)$ But for each player *i*,

$$u_i(\lambda \sigma'_i + (1 - \lambda)\sigma''_i, \sigma_{-i}) =$$

$$\lambda u_i(\sigma'_i,\sigma_{-i}) + (1-\lambda)u_i(\sigma''_i,\sigma_{-i})$$

so that if both σ' and σ'' are best responses to σ_{-i} , then so is their weighted average. 4. $r(\cdot)$ has a closed graph

The correspondence $r(\cdot)$ has a closed graph if the graph of $r(\cdot)$ is a closed set. Whenever the sequence $(\sigma^n, \hat{\sigma}^n) \to (\sigma, \hat{\sigma})$, with $\hat{\sigma}^n \in r(\sigma^n) \forall n$, then $\hat{\sigma} \in r(\sigma)$ (same as upper hemicontinuity)

Suppose that there is a sequence $(\sigma^n, \hat{\sigma}^n) \rightarrow (\sigma, \hat{\sigma})$ such that $\hat{\sigma}^n \in r(\sigma^n)$ for every *n*, but $\hat{\sigma} \notin r(\sigma)$. Then there exists $\epsilon > 0$ and σ' such that

$$u_i(\sigma'_i, \sigma_{-i}) > u_i(\hat{\sigma}_i, \sigma_{-i}) + 3\epsilon$$

Then, for sufficiently large n,

$$u_i(\sigma'_i, \sigma^n_{-i}) > u_i(\sigma'_i, \sigma_{-i}) - \epsilon > u_i(\widehat{\sigma}_i, \sigma_{-i}) + 2\epsilon$$

 $> u_i(\hat{\sigma}_i^n, \sigma_{-i}^n) + \epsilon$

which means that σ'_i does strictly better against σ^n_{-i} than $\hat{\sigma}^n_i$ does, contradicting our assumption.

Learning in Games^{*}

How do players reach equilibria?

What if I don't know what payoffs my opponent will receive?

I can try to learn her actions when we play repeatedly (consider 2-player games for simplicity).

Fictitious play in two player games. Assumes stationarity of opponent's strategy, and that players do not attempt to influence each others' future play. Learn *weight functions*

Calculate probabilities of the other player playing various moves as:

$$\gamma_t^i(s^{-i}) = \frac{\kappa_t^i(s^{-i})}{\sum_{\tilde{s}^{-i} \in S^{-i}} \kappa_t^i(\tilde{s}^{-i})}$$

Then choose the best response action.

$$\kappa_t^i(s^{-i}) = \kappa_{t-1}^i(s^{-i}) + \begin{cases} 1 & \text{if } s_{t-1}^{-i} = s^{-i} \\ 0 & \text{otherwise} \end{cases}$$

*Fudenberg & Levine, *The Theory of Learning in Games*, 1998

Fictitious Play (contd.)

If fictitious play converges, it converges to a Nash equilibrium.

If the two players ever play a (strict) NE at time t, they will play it thereafter. (Proofs omitted)

If *empirical marginal distributions* converge, they converge to NE. But this doesn't mean that play is similar!

t	Player1 Action	Player2 Action	κ_T^1	κ_T^2
1	Т	Т	(1.5, 3)	(2,2.5)
2	Т	Н	(2.5, 3)	(2, 3.5)
3	Т	Н	(3.5, 3)	(2,4.5)
4	Н	Н	(4.5, 3)	(3,4.5)
5	Н	Н	(5.5, 3)	(4, 4.5)
6	Н	Н	(6.5, 3)	(5, 4.5)
7	Н	Т	(6.5,4)	(6,4.5)

Cycling of actions in fictitious play in the matching pennies game

Universal Consistency

Persistent miscoordination: Players start with weights of $(1, \sqrt{2})$

	А	В
Α	0,0	1, 1
В	1,1	0,0

A rule ρ^i is said to be $\epsilon\text{-universally consistent}$ if for any ρ^{-i}

$$\lim_{T \to \infty} \sup \max_{\sigma^i} u^i(\sigma^i, \gamma^i_t) - \frac{1}{T} \sum_t u^i(\rho^i_t(h_{t-1})) \le \epsilon$$

almost surely under the distribution generated by (ρ^i, ρ^{-i}) , where h_{t-1} is the history up to time t - 1, available for the decision-making algorithm at time t.

Back to Experts

Bayesian learning cannot give good payoff guarantees.

- Suppose the true way your opponent's actions are being generated is not in the support of the prior – want protection from unanticipated play, which can be endogenously determined.
- The Bayesian optimal method guarantees a measure of learning something close to the true model, but provides no guarantees on received utility.
- Can use the notion of experts to bound regret!

Define *universal expertise* analogously to universal consistency, and bound regret (lost utility) with respect to the best expert, which is a strategy.

The best response function is derived by solving the optimization problem

$$\max_{\mathcal{I}^i} \mathcal{I}^i \vec{u}_t^i + \lambda v^i (\mathcal{I}^i)$$

 \vec{u}_t^i is the vector of average payoffs player i would receive by using each of the experts

 \mathcal{I}^i is a probability distribution over experts

 λ is a small positive number.

Under technical conditions on v, satisfied by the entropy:

$$-\sum_{s}\sigma(s)\log\sigma(s)$$

we retrieve the exponential weighting scheme, and for every ϵ there is a λ such that our procedure is ϵ -universally expert.