## Strategies and Nash Equilibrium

## A Whirlwind Tour of Game Theory

(Mostly from Fudenberg \& Tirole)

Players choose actions, receive rewards based on their own actions and those of the other players.

Example, the Prisoner's Dilemma:

|  | Cooperate | Defect |
| ---: | :---: | :---: |
| Cooperate | $+3,+3$ | $0,+5$ |
| Defect | $+5,0$ | $+1,+1$ |

A strategy is a specification for how to play the game for a player. A pure strategy defines, for every possible choice a player could make, which action the player picks. A mixed strategy is a probability distribution over strategies.

A Nash equilibrium is a profile of strategies for all players such that each player's strategy is an optimal response to the other players' strategies. Formally, a mixed-strategy profile $\sigma_{*}$ is a Nash equilibrium if for all players $i$ :

$$
u^{i}\left(\sigma_{*}^{i}, \sigma_{*}^{-i}\right) \geq u^{i}\left(s^{i}, \sigma_{*}^{-i}\right) \forall s^{i} \in S^{i}
$$

Nash equilibrium of Prisoner's Dilemma: Both players defect!

## More on Equilibria

## Matching Pennies

|  | H | T |
| :---: | :---: | :---: |
| H | $+1,-1$ | $-1,+1$ |
| T | $-1,+1$ | $+1,-1$ |

No pure strategy equilibria

Nash equilibrium: Both players randomize half and half between actions.

Dominated strategies: Strategy $s_{i}$ (strictly) dominates strategy $s_{i}^{\prime}$ if, for all possible strategy combinations of opponents, $s_{i}$ yields a (strictly) higher payoff than $s_{i}^{\prime}$ to player $i$.

Iterated elimination of strictly dominated strategies: Eliminate all strategies which are dominated, relative to opponents' strategies which have not yet been eliminated.

If iterated elimination of strictly dominated strategies yields a unique strategy $n$-tuple, then this strategy $n$-tuple is the unique Nash equilibrium (and it is strict).

Every Nash equilibrium survives iterated elimination of strictly dominated strategies.

## Existence of Equilibria

## Multiple Equilibria

A coordination game:

|  | L | R |
| :---: | :---: | :---: |
| U | 9,9 | 0,8 |
| D | 8,0 | 7,7 |

$U, L$ and $D, R$ are both Nash equilibria. What would be reasonable to play? With and without coordination?

While $U, L$ is pareto-dominant, playing $D$ and $R$ are "safer" for the row and column players respectively...

Nash's theorem, translated: every game with a finite number of actions for each player where each player's utilities are consistent with the (previously discussed) axioms of utility theory has an equilibrium in mixed strategies.

Idea 1: Reaction correspondences. Player i's reaction correspondence $r_{i}$ maps each strategy profile $\sigma$ to the set of mixed strategies that maximize player $i$ 's payoff when her opponents play $\sigma_{-i}$. Note that $r_{i}$ depends only on $\sigma_{-i}$, so we don't really need all of $\sigma$, but it will be useful to think of it this way. Let $r$ be the Cartesian product of all $r_{i}$. A fixed point of $r$ is a $\sigma$ such that $\sigma \in r(\sigma)$, so that for each player, $\sigma_{i} \in r_{i}(\sigma)$. Thus a fixed point of $r$ is a Nash equilibrium.

Kakutani's FP theorem says that the following are sufficient conditions for $r: \Sigma \rightarrow \Sigma$ to have a FP.

1. $\Sigma$ is a compact, convex, nonempty subset of a finite-dimensional Euclidean space.

Satisfied, because it's a simplex
2. $r(\sigma)$ is nonempty for all $\sigma$

Each player's playoffs are linear, and therefore continuous, in her own mixed strategy. Continuous functions on compact sets attain maxima.
3. $r(\sigma)$ is convex for all $\sigma$

Suppose not. Then $\exists \sigma^{\prime}, \sigma^{\prime \prime}$ such that $\lambda \sigma^{\prime}+$ $(1-\lambda) \sigma^{\prime \prime} \notin r(\sigma)$ But for each player $i$,

$$
\begin{aligned}
& u_{i}\left(\lambda \sigma_{i}^{\prime}+(1-\lambda) \sigma_{i}^{\prime \prime}, \sigma_{-i}\right)= \\
& \lambda u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)+(1-\lambda) u_{i}\left(\sigma_{i}^{\prime \prime}, \sigma_{-i}\right)
\end{aligned}
$$

so that if both $\sigma^{\prime}$ and $\sigma^{\prime \prime}$ are best responses to $\sigma_{-i}$, then so is their weighted average.
4. $r(\cdot)$ has a closed graph

The correspondence $r(\cdot)$ has a closed graph if the graph of $r(\cdot)$ is a closed set. Whenever the sequence $\left(\sigma^{n}, \hat{\sigma}^{n}\right) \rightarrow(\sigma, \widehat{\sigma})$, with $\hat{\sigma}^{n} \in r\left(\sigma^{n}\right) \forall n$, then $\hat{\sigma} \in r(\sigma)$ (same as upper hemicontinuity)

Suppose that there is a sequence $\left(\sigma^{n}, \hat{\sigma}^{n}\right) \rightarrow$ ( $\sigma, \widehat{\sigma}$ ) such that $\hat{\sigma}^{n} \in r\left(\sigma^{n}\right)$ for every $n$, but $\hat{\sigma} \notin r(\sigma)$. Then there exists $\epsilon>0$ and $\sigma^{\prime}$ such that

$$
u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)>u_{i}\left(\widehat{\sigma}_{i}, \sigma_{-i}\right)+3 \epsilon
$$

Then, for sufficiently large $n$,

$$
\begin{aligned}
& u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}^{n}\right)>u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)-\epsilon>u_{i}\left(\widehat{\sigma}_{i}, \sigma_{-i}\right)+2 \epsilon \\
& \quad>u_{i}\left(\widehat{\sigma}_{i}^{n}, \sigma_{-i}^{n}\right)+\epsilon
\end{aligned}
$$

which means that $\sigma_{i}^{\prime}$ does strictly better against $\sigma_{-i}^{n}$ than $\hat{\sigma}_{i}^{n}$ does, contradicting our assumption.

## Learning in Games*

How do players reach equilibria?

What if I don't know what payoffs my opponent will receive?

I can try to learn her actions when we play repeatedly (consider 2-player games for simplicity).

Fictitious play in two player games. Assumes stationarity of opponent's strategy, and that players do not attempt to influence each others' future play. Learn weight functions

$$
\kappa_{t}^{i}\left(s^{-i}\right)=\kappa_{t-1}^{i}\left(s^{-i}\right)+ \begin{cases}1 & \text { if } s_{t-1}^{-i}=s^{-i} \\ 0 & \text { otherwise }\end{cases}
$$

*Fudenberg \& Levine, The Theory of Learning in Games, 1998

Calculate probabilities of the other player playing various moves as:

$$
\gamma_{t}^{i}\left(s^{-i}\right)=\frac{\kappa_{t}^{i}\left(s^{-i}\right)}{\sum_{\tilde{s}^{-i} \in S^{-i} \kappa_{t}^{i}\left(\tilde{s}^{-i}\right)}}
$$

Then choose the best response action.

## Fictitious Play (contd.)

If fictitious play converges, it converges to a Nash equilibrium.

If the two players ever play a (strict) NE at time $t$, they will play it thereafter. (Proofs omitted)

If empirical marginal distributions converge, they converge to NE. But this doesn't mean that play is similar!

| t | Player1 Action | Player2 Action | $\kappa_{T}^{1}$ | $\kappa_{T}^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | T | T | $(1.5,3)$ | $(2,2.5)$ |
| 2 | T | H | $(2.5,3)$ | $(2,3.5)$ |
| 3 | T | H | $(3.5,3)$ | $(2,4.5)$ |
| 4 | H | H | $(4.5,3)$ | $(3,4.5)$ |
| 5 | H | H | $(5.5,3)$ | $(4,4.5)$ |
| 6 | H | H | $(6.5,3)$ | $(5,4.5)$ |
| 7 | H | T | $(6.5,4)$ | $(6,4.5)$ |

Cycling of actions in fictitious play in the matching pennies game

## Universal Consistency

Persistent miscoordination: Players start with weights of $(1, \sqrt{2})$

|  | A | B |
| :---: | :---: | :---: |
| A | 0,0 | 1,1 |
| B | 1,1 | 0,0 |

A rule $\rho^{i}$ is said to be $\epsilon$-universally consistent if for any $\rho^{-i}$

$$
\lim _{T \rightarrow \infty} \sup \max _{\sigma^{i}} u^{i}\left(\sigma^{i}, \gamma_{t}^{i}\right)-\frac{1}{T} \sum_{t} u^{i}\left(\rho_{t}^{i}\left(h_{t-1}\right)\right) \leq \epsilon
$$

almost surely under the distribution generated by ( $\rho^{i}, \rho^{-i}$ ), where $h_{t-1}$ is the history up to time $t-1$, available for the decision-making algorithm at time $t$.

## Back to Experts

Bayesian learning cannot give good payoff guarantees.

- Suppose the true way your opponent's actions are being generated is not in the support of the prior - want protection from unanticipated play, which can be endogenously determined.
- The Bayesian optimal method guarantees a measure of learning something close to the true model, but provides no guarantees on received utility.
- Can use the notion of experts to bound regret!

Define universal expertise analogously to universal consistency, and bound regret (lost utility) with respect to the best expert, which is a strategy.

The best response function is derived by solving the optimization problem

$$
\max _{\mathcal{I}^{i}} \mathcal{I}^{i} \vec{u}_{t}^{i}+\lambda v^{i}\left(\mathcal{I}^{i}\right)
$$

$\vec{u}_{t}^{i}$ is the vector of average payoffs player $i$ would receive by using each of the experts
$\mathcal{I}^{i}$ is a probability distribution over experts
$\lambda$ is a small positive number.
Under technical conditions on $v$, satisfied by the entropy:

$$
-\sum_{s} \sigma(s) \log \sigma(s)
$$

we retrieve the exponential weighting scheme, and for every $\epsilon$ there is a $\lambda$ such that our procedure is $\epsilon$-universally expert.

