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Decision Tree Learning

Notes based on Russell & Norvig, Chapter 18
and Mitchell, Chapter 3

Decision trees can represent all Boolean func-
tions

How many Boolean functions are there on n

variables?

Well, there are 2n rows in the truth table

If there are x rows in the truth table, there are
2x possible functions. So 22n

possible func-
tions!

Are decision trees a good representation for
all these functions? Parity, majority require
exponentially large decision trees...
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Impose an Inductive Bias

Suppose we want to favor short trees over long
ones

Algorithm 1: Search breadth-first through trees
of increasing depth. First all trees of depth 1,
then all trees of depth 2, and so on, until you
find a tree with (minimum/zero) error. Im-
practical.

Instead we’ll focus on a greedy search algo-
rithm called ID3.

Basic question: Which attribute should be tested
at the root of the tree?
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Information Theoretic Measures

First entropy, a measure of homogeneity of
examples. Equivalently, a measure of the un-
certainty associated with a random variable.

In the general case, when X can take on n

values

H(X) = −
n∑

i=1
p(xi) log2 p(xi)

Boolean case:

H(X) = −p log2 p− (1− p) log2(1− p)

(define 0 log0 = 0)

Maximal with equally likely outcomes, minimal
when there is no uncertainty in the outcome

Suppose we have 14 examples:

0+,14− : 0
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7+,7− : 1

9+,5− : 0.940

Interpretation: minimum number of bits nec-
essary to encode the information in a message
on average

Information Gain: Expected reduction in en-
tropy made possible by one feature. Where S

is the training set and X is the feature

Gain(S, X) = H(S)−
∑

i

|Si|
|S|

H(Si)

where

Si = {s ∈ S|Example s has feature value i for X}

Intuitively it is the amount of information pro-
vided by feature X about the class Y

An example from Tom Mitchell’s book:
Day Outlook Temperature Humidity Wind Play Tennis?
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Computing Gain(S, Humidity):

Split into High (3+, 4-, Entropy = 0.985) and
Low (6+, 1-, Entropy = 0.592)

Then information gain is 0.940 − 7
140.985 −

7
140.592 = 0.151

Computing Gain(S, Outlook):

Split into Sunny (2+, 3-, Entropy = 0.971),
Overcast (4+, 0-, Entropy = 0), and Rain
(3+, 2-, Entropy = 0.971)

Information gain is 0.246



The ID3 Algorithm

Given inputs: Training Set S, Feature Set Z

1. If all examples are positive (or negative),
return the leaf node with label “Positive”
(or “Negative”)

2. Find the feature X ∈ Z with highest infor-
mation gain on the Training Set

3. For each possible value of X, call it Xi,
add a branch that tests for X = Xi. Let
the set of examples with X = Xi be SXi

.
If SXi

is empty then add a leaf node to
the branch with the label set to the most
common label in S. Otherwise, create a
subtree beneath the branch by calling ID3
with training set SXi

and feature set Z \{X}
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Inductive bias of ID3? Prefer shorter trees with
higher information gain attributes closer to the
root

How does this relate to our notions of hypoth-
esis complexity?

Caution: Information gain prefers features with
lots of possible values!



Continuous Attributes

Splitting into a Boolean attribute

Threshold must lie in between two points that
are classified differently

Find all such points and evaluate the infor-
mation gain of the feature for each of these
possible threshold values. Pick the threshold
that gives highest information gain
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Pruning

Basic question in the context of decision trees:
when do additional tests stop being useful for
generalization? The option is to just use the
most common class at that node as the label

Three possibilities:

1. Use a validation set to decide whether adding
another test improves accuracy (reduced-
error pruning, a post-pruning method). Prob-
lem: you lose potentially valuable training
data

2. Use an explicit measure of complexity (e.g.
minimum description length principle) to
decide when to stop growing the tree

MDL principle: We prefer “short” hypothe-
ses in some coding scheme. In Bayesian
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terms, we give higher priors to less com-
plex hypotheses in some encoding scheme.
Essentially, we are trying to maximize over
h

P (D|h)P (h)

Equivalently, minimize

− log2 P (D|h)− log2 P (h)

If we think about this information theoret-
ically, it turns out that the hypothesis we
want is the one that minimizes the sum of
the space required to describe the hypoth-
esis and the space required to describe the
data given the hypothesis

What’s the tradeoff? Well, if we develop a
hypothesis that is correct on all examples,
the space required to describe the examples
given the hypothesis is 0! So this is an
intuitive way to think about the problem

3. Use a statistical method to decide whether
adding another test is useful. Standard
method: χ2-pruning.

The χ2
k distribution is the distribution of

the sum of squares of k iid standard nor-
mal RVs. k is the number of degrees of
freedom

Null hypothesis: attribute is irrelevant (if
we had infinite examples, the information
gain would be 0)

Expected numbers of positives and nega-
tives for the ith possible value under the
null hypothesis:

p̂i = p
pi + ni

p + n

n̂i = n
pi + ni

p + n

Measure of total deviation:

D =
∑

i

[
(pi − p̂i)2

p̂i
+

(ni − n̂i)2

n̂i
]



Under the null hypothesis, D is distributed
according to a χ2

k−1 distribution. We can
check for significance of our deviation eas-
ily


