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Unsupervised learning

k-means Clustering

Expectation Maximization
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Unsupervised Learning

Build a model for your data. Which datapoints
are similar?

Nowadays lots of work on using unlabeled data
to improve the performance of supervised learn-
ing
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k-means Clustering

Problem: given m data points, break them up
into k clusters, where k is pre-specified

Objective: minimize
∑k

j=1
∑

xi∈Cj
||xi − µj||2

where µj is the cluster mean

Algorithm:

Initialize µ1, . . . , µk randomly

Repeat until convergence:

1. Assign each xi to the cluster with the clos-
est mean

2. Calculate the new mean for each cluster

µj ←
1

|Cj|
∑

xi∈Cj

xi
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Always terminates at a local minimum

Bad clustering examples for k = 2 (circles) and
k = 3 (bad initialization leads to bad results)

Issues with k-means: how to choose k and how
to initialize

Possible ideas: Use multiple runs with differ-
ent random start configurations? Pick starting
points far apart from each other?



Expectation Maximization

(EM developed by Dempster, Rubin & Laird,
1977. These notes mostly from Tom Mitchell’s
book, with some other references thrown in for
good measure)

Let’s do away with the “hard” assignments and
maximize data likelihood!

Suppose points on the real line are drawn from
one of two Gaussian distributions using the fol-
lowing algorithm:

1. One of the two Gaussians is selected

2. A point is sampled from the selected Gaus-
sian and placed on the real line
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Assume the two Gaussians have the same vari-
ance σ and unknown means µ1 and µ2. What
are the maximum likelihood estimates of µ1

and µ2?

How do we think about this problem? Start
by thinking about each data point as a tuple
(xi, zi1, zi2) where the zs indicate which of the
distributions the points were drawn from (but
they are unobserved).

Now apply the EM algorithm. Start with arbi-
trary values for µ1 and µ2. Now repeat until
we have converged to stationary values for µ1

and µ2:

1. Compute each expected value E[zij] as-
suming the means of the Gaussians are ac-
tually the current estimates of µ1 and µ2



E[zi1] =
f(x = xi|µ = µ1)

f(x = xi|µ = µ1) + f(x = xi|µ = µ2)

=
exp(− 1

2σ2(xi − µ1)2)

exp(− 1
2σ2(xi − µ1)2) + exp(− 1

2σ2(xi − µ2)2)

2. Compute updated (maximum likelihood) es-
timates of µ1 and µ2 using the expected
values E[zij] from step 1.

µi =

∑m
i=1 E[zij]xi

∑m
i=1 E[zij]

EM in General

Define:

1. θ: parameters governing the data (what
we’re trying to find ML estimates of

2. X: observed data

3. Z: unobserved data

4. Y = X ∪ Z

We want to find θ̂ that maximizes E[lnPr(Y |θ)]

The expectation is taken because Y itself is a
random variable (the Z part is unknown!)
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But we don’t know the distribution governing
Y , so how do we take the expecation?

EM uses the current estimate of θ, call it h, to
estimate the distribution governing Y

Define Q(h′|h) that gives the expected log prob-
ability above, assuming that the data were gen-
erated by h

Q(h′|h) = E[lnPr(Y |h′)|h, X]

Now EM consists of repeating the next two
steps until convergence

1. Estimation (E) step: Calculate Q(h′|h) us-
ing the current estimate h and the observed
data X to estimate the probability distribu-
tion over Y

2. Maximization (M) step: Replace h by the
h′ that maximizes Q

Again, only guaranteed to converge to a local
minimum



Deriving Mixtures of Gaussians

Let’s do this for k Gaussians

First, let’s derive an expression for Q(h′|h)

f(yi|h′) =
1√

2πσ2
exp(−

1

2σ2

k∑

j=1
zij(xi− µ′j)

2

m∑

i=1
ln f(yi|h′) =

m∑

i=1



ln
1√

2πσ2
−

1

2σ2

k∑

j=1
zij(xi − µ′j)

2





Taking the expectation and using E[f(z)] =
f(E[z]) when f is linear:

Q(h′|h) =
m∑

i=1



ln
1√

2πσ2
−

1

2σ2

k∑

j=1
E[zij](xi − µ′j)

2
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And the expectation of zij is computed as be-
fore, based on the current hypothesis:

E[zij] =
exp(− 1

2σ2(xi − µj)2)
∑k

n=1 exp(− 1
2σ2(xi − µn)2)

E-step defines the Q-function in terms of the
expectations generated by the previous esti-
mate.

Then the M-step chooses a new estimate to
maximize the Q-function, which is equivalent
to finding the µ′j that minimize:

m∑

i=1

k∑

j=1
E[zij](xi − µ′j)

2

This is just a maximum likelihood problem with
the solution described earlier, namely:

∑m
i=1 E[zij]xi

∑m
i=1 E[zij]


