Evaluating Estimators

Statistical evaluation - ways of choosing without access to test data

Mean Squared Error (MSE): The MSE of an estimator W of a parameter θ is the function of θ defined by $E_{\theta}(W-\theta)^{2}$

Alternatives? (Any increasing function of $\mid W-$ $\theta \mid$ could work...)

Bias/Variance decomposition:

$$
\begin{aligned}
& E(W-\theta)^{2}= \\
& E\left[W^{2}\right]+\theta^{2}-2 \theta E[W]+(E[W])^{2}-(E[W])^{2} \\
& =(\text { Bias } W)^{2}+E\left[W^{2}\right]-(E[W])^{2}
\end{aligned}
$$

Estimators for the Normal Distribution

$$
=(\operatorname{Var} W)+(\operatorname{Bias} W)^{2}
$$

where

$$
\text { Bias } W=E_{\theta} W-\theta
$$

Unbiased estimators ($E_{\theta} W=\theta$ for all θ) are good at controlling bias! An unbiased estimator has MSE equal to its variance

Let X_{1}, \ldots, X_{n} be iid $N\left(\mu, \sigma^{2}\right)$
Unbiased estimator for mean is sample mean

Unbiased estimator for variance is the sample variance:

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Proof:

$$
\begin{aligned}
& E\left[S^{2}\right]=E\left[\frac{1}{n-1}\left(\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right)\right. \\
& =\frac{1}{n-1}\left[E\left(\sum_{i=1}^{n} X_{i}^{2}\right)+n \bar{X}^{2}-2 \bar{X} \sum_{i=1}^{n} X_{i}\right] \\
& =\frac{1}{n-1} E\left(\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}\right)
\end{aligned}
$$

$$
=\frac{1}{n-1}\left(n E X_{1}^{2}-n E \bar{X}^{2}\right)
$$

Now we need to use a couple of additional facts:

$$
E X_{1}^{2}-\left(E X_{1}\right)^{2}=\sigma^{2}
$$

and

$$
E \bar{X}^{2}-(E \bar{X})^{2}=\sigma^{2} / n
$$

(This second is basically the definition of standard error)

To show the second, here's a lemma:

$$
\operatorname{Var} \sum_{i=1}^{n} g\left(X_{i}\right)=n \operatorname{Var} g\left(X_{1}\right)
$$

(where $E g\left(X_{i}\right)$) and $\operatorname{Varg}\left(X_{i}\right)$ exist)

Proof:

$$
\begin{aligned}
& \operatorname{Var} \sum_{i=1}^{n} g\left(X_{i}\right)=E\left[\sum_{i=1}^{n} g\left(X_{i}\right)-E\left(\sum_{i=1}^{n} g\left(X_{i}\right)\right)\right]^{2} \\
& =E\left[\sum_{i=1}^{n}\left(g\left(X_{i}\right)-E g\left(X_{i}\right)\right)\right]^{2}
\end{aligned}
$$

If we expand this, there are n terms of the form

$$
\left(g\left(X_{i}\right)-E g\left(X_{i}\right)\right)^{2}
$$

The expectation of this term is $\operatorname{Var} g\left(X_{i}\right)$. Therefore, for n of them we get $n \operatorname{Var} g\left(X_{1}\right)$.

What about the other terms? They are all of the form:

$$
\left(g\left(X_{i}\right)-E g\left(X_{i}\right)\right)\left(g\left(X_{j}\right)-E g\left(X_{j}\right)\right)
$$

with $i \neq j$ The expectation of this is the covariance of X_{i} and X_{j}, which is 0 from independence.

MSEs for Estimators for the Normal Distribution

Unbiased estimator for the mean μ is \bar{X} Unbiased estimator for the variance σ^{2} is S^{2}

MSEs for these estimators are:

$$
\begin{aligned}
& E(\bar{X}-\mu)^{2}=\operatorname{Var} \bar{X}=\frac{\sigma^{2}}{n} \\
& E\left(S^{2}-\sigma^{2}\right)^{2}=\operatorname{Var} S^{2}=\frac{2 \sigma^{4}}{n-1}
\end{aligned}
$$

MLE for the variance is $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\right.$ $\bar{X})^{2}=\frac{n-1}{n} S^{2}$

$$
\begin{aligned}
& E \hat{\sigma}^{2}=E\left(\frac{n-1}{n} S^{2}\right)=\left(\frac{n-1}{n}\right) \sigma^{2} \\
& \operatorname{Var} \widehat{\sigma}^{2}=\operatorname{Var}\left(\frac{n-1}{n} S^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{n-1}{n}\right)^{2} \operatorname{Var} S^{2} \\
& =\left(\frac{n-1}{n}\right)^{2} \frac{2 \sigma^{4}}{n-1} \\
& =\frac{2(n-1) \sigma^{4}}{n^{2}}
\end{aligned}
$$

MSE, using the bias/variance decomposition

$$
\begin{aligned}
& E\left(\hat{\sigma}^{2}-\sigma^{2}\right)^{2}=\frac{2(n-1) \sigma^{4}}{n^{2}}+\left(\frac{n-1}{n} \sigma^{2}-\sigma^{2}\right)^{2} \\
& =\frac{2 n-1}{n^{2}} \sigma^{4}
\end{aligned}
$$

Which is less than

$$
\frac{2 \sigma^{4}}{n-1}
$$

Bias/Variance Tradeoff in General

Keep in mind: MSE is not the last word. Should we be comfortable using biased estimators? Why are they biased?

Is MSE reasonable for scale parameters (as opposed to location ones?) - forgives underestimation...

Hypothesis space too simple? High bias, low variance

Hypothesis space too complex? Low bias, high variance

Regression

Statistics: describing data, inferring conclusions

Machine learning: predicting future data (out-of-sample)

What would be a reasonable thing to do in the following case (diagram of point cloud)?

Assumption for linear regression: data can be modeled by

$$
y_{i}=\alpha+\beta x_{i}+\epsilon_{i}
$$

First algorithmic question for us: how to find α and β ?

Least Squares

Define \bar{x} and \bar{y} as usual from our sample data. Now define:

$$
\begin{aligned}
& S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& S_{y y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \\
& S_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{aligned}
$$

Let's fit a line to the data as best as we can. How do we define this? Residual sum of squares (RSS)

$$
\sum_{i=1}^{n}\left(y_{i}-\left(c+d x_{i}\right)\right)^{2}
$$

Now, find a and b, estimators of α and β, such that:

$$
\min _{c, d} \sum_{i=1}^{n}\left(y_{i}-\left(c+d x_{i}\right)\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\left(a+b x_{i}\right)\right)^{2}
$$

For any fixed value of d, the minimizing value of c can be found as follows.

$$
\sum_{i=1}^{n}\left(y_{i}-\left(c+d x_{i}\right)\right)^{2}=\sum_{i=1}^{n}\left(\left(y_{i}-d x_{i}\right)-c\right)^{2}
$$

Turns out the right side is minimized at

$$
\begin{aligned}
& c=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-d x_{i}\right) \\
& =\bar{y}-d \bar{x}
\end{aligned}
$$

Why?

$$
\min _{a} \sum_{i=1}^{n}\left(x_{i}-a\right)^{2}=\min _{a} \sum_{i=1}^{n}\left(x_{i}-\bar{x}+\bar{x}-a\right)^{2}
$$

$=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+2 \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)(\bar{x}-a)+\sum_{i=1}^{n}(\bar{x}-a)^{2}$
Second term drops out, basically giving us our result

For a given value of d, the minimum value of RSS is then

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\left(y_{i}-d x_{i}\right)-(\bar{y}-d \bar{x})\right)^{2} \\
& =\sum_{i=1}^{n}\left(\left(y_{i}-\bar{y}\right)-d\left(x_{i}-\bar{x}\right)\right)^{2} \\
& =S_{y y}-2 d S_{x y}+d^{2} S_{x x}
\end{aligned}
$$

Take the derivative with respect to d and set to 0

$$
\begin{aligned}
& -2 S_{x y}+2 d S_{x x}=0 \\
& \Rightarrow d=\frac{S_{x y}}{S_{x x}}
\end{aligned}
$$

A Statistical Method: BLUE

Assumptions:

$$
\begin{aligned}
& E Y_{i}=\alpha+\beta x_{i} \\
& \operatorname{Var} Y_{i}=\sigma^{2}
\end{aligned}
$$

Second one implies that variance is the same for all data points No assumption needed on the distribution of the Y_{i}

BLUE: Best Linear Unbiased Estimator

Linear: estimator of the form $\sum_{i=1}^{n} d_{i} Y_{i}$
Unbiased: estimator must satisfy $E \sum_{i=1}^{n} d_{i} Y_{i}=$ β

Therefore $\beta=\sum_{i=1}^{n} d_{i} E\left[Y_{i}\right]$
$=\sum_{i=1}^{n} d_{i}\left(\alpha+\beta x_{i}\right)$

$$
=\alpha \sum_{i=1}^{n} d_{i}+\beta \sum_{i=1}^{n} d_{i} x_{i}
$$

Must hold for all α and β. This is true iff $\sum_{i=1}^{n} d_{i}=0$ and $\sum_{i=1}^{n} d_{i} x_{i}=1$

Best: Smallest variance (Equal to MSE for unbiased estimators)

$$
\begin{aligned}
& \operatorname{Var} \sum_{i=1}^{n} d_{i} Y_{i}=\sum_{i=1}^{n} d_{i}^{2} \operatorname{Var} Y_{i} \\
& =\sum_{i=1}^{n} d_{i}^{2} \sigma^{2}=\sigma^{2} \sum_{i=1}^{n} d_{i}^{2}
\end{aligned}
$$

The BLUE is then defined by constants d_{i} that minimize $\sum_{i=1}^{n} d_{i}^{2}$ while satisfying the constraints derived above.

It turns out that the choices $d_{i}=\frac{x_{i}-\bar{x}}{S_{x x}}$ are the choices that do this, which gives us $b=\frac{S_{x y}}{S_{x x}}$

The advantage of working under statistically explicit assumptions is we also get statistical knowledge about our estimator

$$
\operatorname{Var} b=\sigma^{2} \sum_{i=1}^{n} d_{i}^{2}=\frac{\sigma^{2}}{S_{x x}}
$$

If you can choose the x_{i}, you can design the experiment to try and minimize the variance!

Similar analysis shows that the BLUE of α is the same a as in least squares

