
About this class

k-Nearest-Neighbors

Bagging

Boosting

1

Nearest-Neighbor Methods

Store all training examples

Given a new test example, find the k that are
closest to it in feature space (distance: Eu-
clidean/Mahalanobis?)

Return majority classification among those k

points

Curse of dimensionality – irrelevant features
can dominate classification

Training is trivial, but efficiency of finding k

nearest points?

Use intelligent data structures like kd-trees.
Worst case behavior is bad for nearest-neighor

2



search (O(l)) but much better on average (al-
though distribution dependent). Initial fixed
cost to building the tree

Big caveat: search cost seems to scale badly
with the number of dimensions in the feature
space!

Very simple but efective algorithm!

Bagging

Bootstrap Aggregating (Breiman, 1994)

Key idea: Build t independent replicates of the
training set L by sampling with replacement

Train classifier on each of them

Predict the majority of all these classifiers

In the case of a regression problem, predict the
average

For decision trees: significant improvement in
accuracy, but a loss in comprehensibility

Works well for unstable algorithms. Intuition:
unstable algorithms can change their predic-
tions substantially based on small changes in
the training set, which is essentially what each

3



replicate training set is doing. When you aver-
age over multiple sets of training data, you’re
getting a more stable predictor.

Let fA be the aggregated predictor. Then
fA(x) attempts to approximate ELf(x)

How different are the training sets? The prob-
ability that a given example is not in a given
subset is (1− 1/n)n → 1/e = 0.368 as n→∞.

Empirically, 50 replicates give all the benefit
of bagging, often a 20% to 40% reduction in
error rate.

Each trained model has higher initial variance
since it is trained on a smaller training set.

Bagging stable classifiers can somewhat de-
grade performance

What would happen with linear regression or
Naive Bayes?

Boosting

Basic question: Can we take an algorithm that
learns weak hypotheses that perform some-
what better than chance and make it into a
strong learner?

Answer: yes (Freund and Schapire, various pa-
pers)

We’ll again build an ensemble classifier, but,
unlike bagging, members of the ensemble will
have different weights

Bagging reduces variance (albeit slower than
1/n because the training set is replicated), but
boosting reduces bias by making the hypothe-
sis space more flexible

4



AdaBoost Algorithm

Given:

Training examples (xi, yi), . . . , (xm, ym)

A weak learning algorithm, guaranteed to make
error ε ≤ 1

2 − γ

Maintain a weight distribution D over training
examples. Initialize D(i) = 1/m.

Now repeat for a number of rounds T :

1. Train weak learner using distribution D.
This gives a weak hypothesis ht : X →
{±1}. ht has error

εt = Pr
i∼Dt

[h(xi) %= yi]

5

2. αt ← 1
2 log

(
1−εt

εt

)

3. Update:

D(i)←
D(i)

Z
e−αt if ht(xi) = yi

D(i)←
D(i)

Z
eαt if ht(xi) %= yi

where Z is a normalization factor

Return final hypothesis:

H(x) = sgn




T∑

t=1
αtht(x)





Caveat: We need a weak learner that can learn
even on hard weight distributions!



Training Error

First let’s bound the weight distribution:

DT+1(i) =
DT (i)

ZT
exp(−αThT (xi)yi)

DT+1(i) =
1

n

T∏

t=1

1

Zt
exp(−αThT (xi)yi)

=
1

n

exp
∑T

t=1(−αtht(xi)yi)
∏T

t=1 Zt

Now for the training error:

ε =
1

n

∑

i

I[yi
∑

t
αtht(xi) ≤ 0]

≤
1

n

∑

i

exp(−yi
∑

t
αtht(xi))

(because e−z ≥ 1 if z ≤ 0)

6

Substituting from above,

ε ≤
∑

i

DT+1(i)
∏

t
Zt

=
∏

t
Zt

Finally,

Zt =
∑

i:ht(xi)=yi

Dt(i)e
−αt +

∑

i:ht(xi) %=yi

Dt(i)e
αt

= e−αt(1− εt) + eαt(εt)

= 2
√

εt(1− εt)

=
√

1− 4γ2
t

Then

ε ≤ exp(−2
∑

t
γ2
t )

So, proof that we can boost weak learners that
meet the requisite conditions into strong learn-
ers!



Generalization and Empirical
Properties

Fairly robust to overfitting. In fact, often test
error keeps decreasing even after training error
has converged

Works well with a range of hypotheses, includ-
ing decision trees, stumps, and Naive Bayes

Relation to SVMs? Can think of boosting
as maximizing a different margin, and of us-
ing multiple weak learners to go to a high di-
mensional space, instead of using a kernel like
SVMs do. Computationally, boosting is easier
(LP as opposed to QP)

7


