The Perceptron

Weight vector W =< wq,w1,...,wn > such
) that for an input z1,...xn, predict ¥ = 1 if
About this class wo 4+ X", wiz; > 0 and Y = —1 (equivalently
0, but it's easier to think about it this way)
Separating hyperplanes (again) otherwise
The perceptron algorithm For notational convenience add an additional
imaginary zg = 1 for every input so now the
The perceptron convergence theorem classifier is sgn(W.X)
Gradient descent Perceptron update rule:

These notes are based on Bishop, Chapter 3, w; — Wi + Aw;
and Mitchell, Chapter 4. where

Aw; =n(Y —W.X)x;

For the perceptron criterion, n does not matter
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Decision surface is a hyperplane. wqg affects
the distance from origin, but not the angle.
The rest of w is perpendicular to the separating
hyperplane

Similar to logistic regression — historically very
important!

The Perceptron Convergence
Theorem

Using capital letters for the entire vector, let
R be max; ||Xt||

Suppose we repeatedly iterate through the data
and perform the perceptron criterion update

Suppose the data are linearly separable. That
is
WY« (W X)) =1

The perceptron algorithm will converge to a
linear separator

We have Wt—|—l = W; 4+ (Xtht)



After running the algorithm for some time,
let's say that input (Xp,Y,) has been misclas-
sified m, times

W =Y mXnYn
n
=wTw =Y »nwTX,v,
n

> 7 min w*T X,y

where 7 is now the total number of mistakes
made. So we have established the bounded-
ness below of the projection of W on W*

Now the next step is to show boundedness
above of W after + errors

W1l = [[WT + XnYnl[?

= [|Wn|]? + 2Yn(Wn.X) + || Xp]|?

Since we made a mistake, Y,(W,.X) < 0, and
we have || X,||? < R?, so

W1l < [[Wall? + R?

Therefore, after = updates

W[ < 7R?

So the length of W increases no faster than /7,
but it increases at least as fast as . Therefore,
it must stop changing for sufficiently large r

Things to think about:
1. Decrease in error is not monotonic!

2. Basic generalization result — this algorithm
will converge after a finite number of er-
rors. T herefore it must be able to general-
ize (assuming concept is in the hypothesis
space)



Gradient Descent

Y is the target output. Let o be the un-
thresholded perceptron output. Define the er-
ror function E(w) = & Y ge p(Yyq — 09)2.

Then
oF

8wi - 72

dED

deD

= Z(Y

deD

= > (Yy— Od)(—wid)

deD

w - Tq)

Then the increment in a step of gradient de-
scent for the ¢th weight is given by:

oOF
=n > (Yqg—o04)(ziq)
dw; d%:D '

Aw; = —n

Gradient descent converges asymptotically to
the minimum error hypothesis (there is a unique
error-minimizing weight vector). However, there
is no finite-time guarantee of convergence. But
it is guaranteed to converge, unlike training us-
ing the perceptron criterion.

Another point to note: gradient descent using
this error function uses the unthresholded out-
put, whereas the perceptron criterion uses the
thresholded output.



