
About this class

Separating hyperplanes (again)

The perceptron algorithm

The perceptron convergence theorem

Gradient descent

These notes are based on Bishop, Chapter 3,
and Mitchell, Chapter 4.
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The Perceptron

Weight vector W =< w0, w1, . . . , wn > such
that for an input x1, . . . xn, predict Y = 1 if
w0 +

∑n
i=1 wixi > 0 and Y = −1 (equivalently

0, but it’s easier to think about it this way)
otherwise

For notational convenience add an additional
imaginary x0 = 1 for every input so now the
classifier is sgn(W.X)

Perceptron update rule:

wi ← wi + ∆wi

where

∆wi = η(Y −W.X)xi

For the perceptron criterion, η does not matter
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Decision surface is a hyperplane. w0 affects
the distance from origin, but not the angle.
The rest of w is perpendicular to the separating
hyperplane

Similar to logistic regression – historically very
important!

The Perceptron Convergence
Theorem

Using capital letters for the entire vector, let
R be maxt ||Xt||

Suppose we repeatedly iterate through the data
and perform the perceptron criterion update

Suppose the data are linearly separable. That
is

∃W ∗Yt ∗ (W ∗.Xt) = 1

The perceptron algorithm will converge to a
linear separator

We have Wt+1 = Wt + (Xt.Yt)
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After running the algorithm for some time,
let’s say that input (Xn, Yn) has been misclas-
sified τn times

W =
∑

n
τnXnYn

⇒ W ∗T .W =
∑

n
τnW ∗TXnYn

≥ τ min
n

W ∗TXnYn

where τ is now the total number of mistakes
made. So we have established the bounded-
ness below of the projection of W on W ∗

Now the next step is to show boundedness
above of W after τ errors

||Wτ+1||2 = ||W τ + XnYn||2

= ||Wn||2 + 2Yn(Wn.X) + ||Xn||2

Since we made a mistake, Yn(Wn.X) < 0, and
we have ||Xn||2 < R2, so

||Wτ+1||2 < ||Wn||2 + R2

Therefore, after τ updates

||W ||2 ≤ τR2

So the length of W increases no faster than
√

τ ,
but it increases at least as fast as τ . Therefore,
it must stop changing for sufficiently large τ

Things to think about:

1. Decrease in error is not monotonic!

2. Basic generalization result – this algorithm
will converge after a finite number of er-
rors. Therefore it must be able to general-
ize (assuming concept is in the hypothesis
space)



Gradient Descent

Y is the target output. Let o be the un-
thresholded perceptron output. Define the er-
ror function E(w) = 1

2
∑

d∈D(Yd − od)
2.

Then

∂E

∂wi
=

1

2

∑

d∈D

∂

∂wi
(Yd − od)

2

=
1

2

∑

d∈D

2(Yd − od)
∂

∂wi
(Yd − od)

=
∑

d∈D

(Yd − od)
∂

∂wi
(Yd − w · xd)

=
∑

d∈D

(Yd − od)(−xid)

Then the increment in a step of gradient de-
scent for the ith weight is given by:

∆wi = −η
∂E

∂wi
= η

∑

d∈D

(Yd − od)(xid)
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Gradient descent converges asymptotically to
the minimum error hypothesis (there is a unique
error-minimizing weight vector). However, there
is no finite-time guarantee of convergence. But
it is guaranteed to converge, unlike training us-
ing the perceptron criterion.

Another point to note: gradient descent using
this error function uses the unthresholded out-
put, whereas the perceptron criterion uses the
thresholded output.


