## Strategies and Dominant Strategy Solutions

A strategy is a specification for how to play the game for a player. A pure strategy defines, for every possible choice a player could make, which action the player picks. A strategy profile is a set of strategies for all players which fully specifies all actions in a game.

Notation: If $s \in S$ is a strategy profile then we say $s_{i}$ for player $i$ 's strategy and $s_{-i}$ for everyone else's (an $n-1$ dimensional vector).

A game has a dominant strategy solution if every player has a unique best strategy, independent of the strategies played by others. So, for example, the Prisoner's Dilemma has a dominant strategy solution.
$s \in S$ is a dominant strategy solution if $\forall i$ and every other $s^{\prime} \in S$ :

$$
u_{i}\left(s_{i}, s_{-i}^{\prime}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}^{\prime}\right)
$$

This is a very strong requirement (the field of mechanism design seeks to design games with dominant strategy solutions, as we will see later).

## Iterated Elimination of Strictly Dominated Strategies

Dominated strategies: Strategy $s_{i}$ (strictly) dominates strategy $s_{i}^{\prime}$ if, for all possible strategy combinations of opponents, $s_{i}$ yields a (strictly) higher payoff than $s_{i}^{\prime}$ to player $i$.

Iterated elimination of strictly dominated strategies: Eliminate all strategies which are dominated, relative to opponents' strategies which have not yet been eliminated.

If iterated elimination of strictly dominated strategies yields a unique strategy $n$-tuple, then this strategy $n$-tuple is the unique Nash equilibrium (and it is strict).

Every Nash equilibrium survives iterated elimination of strictly dominated strategies.

# Coordination Games 

## Example:

|  | X | Y | Z |
| :---: | :---: | :---: | :---: |
| A | 1,1 | 2,0 | 2,2 |
| B | 0,3 | 1,5 | 4,4 |
| C | 2,4 | 3,6 | 3,0 |

First eliminate $A$, then $X$, then $Z$, then $B$, leaving ( $C, Y$ ).

|  | Ballgame | Symphony |
| ---: | :---: | :---: |
| Ballgame | 5,6 | 1,1 |
| Symphony | 2,2 | 6,5 |

Girl is the row player, Boy is the column player.

There are two equilibria: both go to the ballgame or both go to the symphony. In both cases neither one of them would want to unilaterally change his/her action.

## More on Multiple Equilibria

Another coordination game:

|  | L | R |
| :---: | :---: | :---: |
| U | 9,9 | 0,8 |
| D | 8,0 | 7,7 |

$U, L$ and $D, R$ are both Nash equilibria. What would be reasonable to play? With and without coordination?

While $U, L$ is pareto-dominant, playing $D$ and $R$ are "safer" for the row and column players respectively...

## Correlated Equilibrium

A coordinator can choose strategies (equivalently, the players have access to the same randomizer: think traffic lights). Each player must find it rational to play the coordinator's recommendation. Let $p(s)$ be the probability of a strategy vector $s$ being recommended. Then it must be that, for each player $i$,

$$
\sum_{s_{-i}} p\left(s_{i}, s_{-i}\right) u_{i}\left(s_{i}, s_{-i}\right) \geq \sum_{s_{-i}} p\left(s_{i}, s_{-i}\right) u_{i}\left(s_{i}^{\prime}, s_{-i}\right)
$$

That is, the expected utility of a player cannot be improved by switching actions.

Note that Nash equilibria are special cases of correlated equilibria in which the distribution over $S$ is the product of the independent distributions for each player.
$6=4$.
Switch to $D ?(1 / 2) \times 0+(1 / 2) \times 7=3.5$.
Therefore, no!

What if I'm told to take action D? Then I get 7, which is the best possible, so obviously I don't want to switch to $C$.

What is my expected payoff in this game?
$(1 / 3) \times 7+(1 / 3) \times 6+(1 / 3) \times 2=5$

Example: another cooperate-defect game, but different from the Prisoner's Dilemma (how?)

|  | D | C |
| :---: | :---: | :---: |
| D | 0,0 | 7,2 |
| C | 2,7 | 6,6 |

What are the Nash equilibria? (1) (C, D) (2) ( $\mathrm{D}, \mathrm{C}$ ) (3) Play D with probability $1 / 3$. Expected payoff for both players in the third one?

$$
(1 / 9) \times 0+(2 / 9) \times 7+(2 / 9) \times 2+(4 / 9) \times 6=42 / 9
$$

A correlated equilibrium: the coordinator draws $(C, C),(C, D)$, or (D, C), each with equal probability.

Suppose I am told to take action C. Would I be better off switching to D given what I know about the distribution?
Expected payoff playing C: $(1 / 2) \times 2+(1 / 2) \times$

