
Nash’s Theorem

Every game with a finite number of actions

for each player where each player’s utilities are

consistent with the axioms of utility theory has

an equilibrium in mixed strategies.

Idea 1: Reaction correspondences. Player i’s

reaction correspondence ri maps each strategy

profile σ to the set of mixed strategies that

maximize player i’s payoff when her opponents

play σ−i. Note that ri depends only on σ−i,

so we don’t really need all of σ, but it will be

useful to think of it this way. Let r be the

Cartesian product of all ri. A fixed point of

r is a σ such that σ ∈ r(σ), so that for each

player, σi ∈ ri(σ). Thus a fixed point of r is a

Nash equilibrium.

Kakutani’s FP theorem says that the following

are sufficient conditions for r : Σ → Σ to have

a FP.
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1. Σ is a compact, convex, nonempty subset

of a finite-dimensional Euclidean space.

Satisfied, because it’s a simplex

2. r(σ) is nonempty for all σ

Each player’s payoffs are linear, and there-

fore continuous, in her own mixed strategy.

Continuous functions on compact sets at-

tain maxima.

3. r(σ) is convex for all σ

Suppose not. Then ∃σ�
,σ

��
such that λσ

�
+

(1− λ)σ
��
/∈ r(σ) But for each player i,

ui(λσ
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so that if both σ
�
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��
are best responses

to σ−i, then so is their weighted average.

4. r(·) has a closed graph

The correspondence r(·) has a closed graph

if the graph of r(·) is a closed set. When-

ever the sequence (σn, σ̂n) → (σ, σ̂), with

σ̂n ∈ r(σn)∀n, then σ̂ ∈ r(σ) (same as up-

per hemicontinuity)

Suppose that there is a sequence (σn, σ̂n) →
(σ, σ̂) such that σ̂n ∈ r(σn)for every n, but

σ̂ /∈ r(σ). Then there exists � > 0 and σ�

such that
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Then, for sufficiently large n,
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which means that σ
�
i does strictly better

against σn−i than σ̂ni does, contradicting our

assumption.

An Auction Game

Suppose I run a first price auction for a paint-

ing. There are two bidders, and it is common

knowledge that vi ∼ U [0,1] for both. How

much should the seller expect to make from

this auction?

Well, let’s solve the game. Suppose I am a

bidder with valuation v. My strategy s is a

mapping from v to b, my bid. Let’s make two

assumptions:

(1) s(·) is strictly increasing and differentiable

(this is restrictive).

(2) s(v) ≤ v ∀v (this is rational, and also im-

plies s(0) = 0.)

We’ll restrict attention to the case where both

participants use the same s. This makes sense

because they are a priori identical.
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Then the bidder with the higher valuation wins.

Therefore Pr(I win | I have value vi) = vi.

If I win, my payoff is vi − s(vi).

Therefore, my expected payoff is vi(vi−s(vi)) =

g(vi).

How can we analyze deviations to an arbitrary

strategy s�(·) satisfying the two conditions above?

It doesn’t make sense to bid below 0 or above

1, and s�(·) is continuous, increasing, and dif-

ferentiable. Therefore, we can simulate s� by

submitting a fake valuation to s.

Then, the non-deviation condition becomes:

vi(vi − s(vi)) ≥ v(vi − s(v))∀fake values v

Proposition: s(v) = v/2 satisfies this. Why?

LHS is v2i /2. RHS is vvi − v2/2. So we need

v2i
2

− vvi +
v2

2
≥ 0

⇒ (1/2)(v − vi)
2 ≥ 0

which is true.

[Note: not a dominant strategy, only equilib-

rium]

How do we actually find the solution? In this

case through a differential equation:

In order for s(·) to satisfy vi(vi− s(vi)) ≥ v(vi−
s(v)), g(v) = v(vi − s(v)) must be maximized

at v = vi. Therefore g�(vi) = 0.

g�(v) = vi − s(v)− vs�(v)

Therefore s�(vi) = 1−
s(vi)

vi

This is solved by s(vi) = vi/2.

So, what can the auctioneer expect to make?

Second order statistic of the uniform distribu-

tion with 2 samples is 2/3, therefore 1/3.

Second Price Auctions

Highest bidder wins, but pays the amount of

the second highest bid.

Dominant strategy to bid true valuation. Why?

Consider alternate bid bi + δ. Raised bid af-

fects outcome only if highest other bid bj is

in-between bi and bi + δ. But then you end up

paying more than you value the item for!

Consider alternate bid bi − δ. Lowered bid af-

fects outcome only if highest other bid bk is

in-between bi and bi − δ. But then you lose

and get 0 when you could have won with a

non-negative payoff!

Expected revenue in the uniform setting? n−
1st order statistic of n draws, so

n−1

n+1
. Ex-

actly the same! An example of the revenue
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equivalence theorem: very sketchily, in auc-

tions where the bidder with the highest val-

uation wins, all bidders are risk neutral, and

a couple of other conditions, the seller’s ex-

pected revenue is the same.


