Nash's Theorem

Every game with a finite number of actions for each player where each player's utilities are consistent with the axioms of utility theory has an equilibrium in mixed strategies.

Idea 1: Reaction correspondences. Player i 's reaction correspondence r_{i} maps each strategy profile σ to the set of mixed strategies that maximize player i 's payoff when her opponents play σ_{-i}. Note that r_{i} depends only on σ_{-i}, so we don't really need all of σ, but it will be useful to think of it this way. Let r be the Cartesian product of all r_{i}. A fixed point of r is a σ such that $\sigma \in r(\sigma)$, so that for each player, $\sigma_{i} \in r_{i}(\sigma)$. Thus a fixed point of r is a Nash equilibrium.

Kakutani's FP theorem says that the following are sufficient conditions for $r: \Sigma \rightarrow \Sigma$ to have a FP.
4. $r(\cdot)$ has a closed graph

The correspondence $r(\cdot)$ has a closed graph if the graph of $r(\cdot)$ is a closed set. Whenever the sequence $\left(\sigma^{n}, \hat{\sigma}^{n}\right) \rightarrow(\sigma, \widehat{\sigma})$, with $\hat{\sigma}^{n} \in r\left(\sigma^{n}\right) \forall n$, then $\hat{\sigma} \in r(\sigma)$ (same as upper hemicontinuity)

Suppose that there is a sequence $\left(\sigma^{n}, \widehat{\sigma}^{n}\right) \rightarrow$ ($\sigma, \widehat{\sigma}$) such that $\hat{\sigma}^{n} \in r\left(\sigma^{n}\right)$ for every n, but $\hat{\sigma} \notin r(\sigma)$. Then there exists $\epsilon>0$ and σ^{\prime} such that

$$
u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)>u_{i}\left(\widehat{\sigma}_{i}, \sigma_{-i}\right)+3 \epsilon
$$

Then, for sufficiently large n,

$$
\begin{aligned}
& u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}^{n}\right)>u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)-\epsilon>u_{i}\left(\widehat{\sigma}_{i}, \sigma_{-i}\right)+2 \epsilon \\
& \quad>u_{i}\left(\widehat{\sigma}_{i}^{n}, \sigma_{-i}^{n}\right)+\epsilon
\end{aligned}
$$

which means that σ_{i}^{\prime} does strictly better against σ_{-i}^{n} than $\hat{\sigma}_{i}^{n}$ does, contradicting our assumption.

1. Σ is a compact, convex, nonempty subset of a finite-dimensional Euclidean space.

Satisfied, because it's a simplex
2. $r(\sigma)$ is nonempty for all σ

Each player's payoffs are linear, and therefore continuous, in her own mixed strategy. Continuous functions on compact sets attain maxima.
3. $r(\sigma)$ is convex for all σ

Suppose not. Then $\exists \sigma^{\prime}, \sigma^{\prime \prime}$ such that $\lambda \sigma^{\prime}+$ $(1-\lambda) \sigma^{\prime \prime} \notin r(\sigma)$ But for each player i,

$$
\begin{aligned}
& u_{i}\left(\lambda \sigma_{i}^{\prime}+(1-\lambda) \sigma_{i}^{\prime \prime}, \sigma_{-i}\right)= \\
& \lambda u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)+(1-\lambda) u_{i}\left(\sigma_{i}^{\prime \prime}, \sigma_{-i}\right)
\end{aligned}
$$

so that if both σ^{\prime} and $\sigma^{\prime \prime}$ are best responses to σ_{-i}, then so is their weighted average.

An Auction Game

Suppose I run a first price auction for a painting. There are two bidders, and it is common knowledge that $v_{i} \sim U[0,1]$ for both. How much should the seller expect to make from this auction?

Well, let's solve the game. Suppose I am a bidder with valuation v. My strategy s is a mapping from v to b, my bid. Let's make two assumptions:
(1) $s(\cdot)$ is strictly increasing and differentiable (this is restrictive).
(2) $s(v) \leq v \quad \forall v$ (this is rational, and also implies $s(0)=0$.)

We'll restrict attention to the case where both participants use the same s. This makes sense because they are a priori identical.

Then the bidder with the higher valuation wins. Therefore $\operatorname{Pr}\left(\mathrm{I}\right.$ win $\mid \mathrm{I}$ have value $\left.v_{i}\right)=v_{i}$. If I win, my payoff is $v_{i}-s\left(v_{i}\right)$.
Therefore, my expected payoff is $v_{i}\left(v_{i}-s\left(v_{i}\right)\right)=$ $g\left(v_{i}\right)$.

How can we analyze deviations to an arbitrary strategy $s^{\prime}(\cdot)$ satisfying the two conditions above? It doesn't make sense to bid below 0 or above 1 , and $s^{\prime}(\cdot)$ is continuous, increasing, and differentiable. Therefore, we can simulate s^{\prime} by submitting a fake valuation to s.
Then, the non-deviation condition becomes:

$$
v_{i}\left(v_{i}-s\left(v_{i}\right)\right) \geq v\left(v_{i}-s(v)\right) \forall f \text { fake values } v
$$

Proposition: $s(v)=v / 2$ satisfies this. Why? LHS is $v_{i}^{2} / 2$. RHS is $v v_{i}-v^{2} / 2$. So we need

$$
\frac{v_{i}^{2}}{2}-v v_{i}+\frac{v^{2}}{2} \geq 0
$$

Second Price Auctions

Highest bidder wins, but pays the amount of the second highest bid.

Dominant strategy to bid true valuation. Why?

Consider alternate bid $b_{i}+\delta$. Raised bid affects outcome only if highest other bid b_{j} is in-between b_{i} and $b_{i}+\delta$. But then you end up paying more than you value the item for!

Consider alternate bid $b_{i}-\delta$. Lowered bid affects outcome only if highest other bid b_{k} is in-between b_{i} and $b_{i}-\delta$. But then you lose and get 0 when you could have won with a non-negative payoff!

Expected revenue in the uniform setting? $n-$ 1 st order statistic of n draws, so $\frac{n-1}{n+1}$. Exactly the same! An example of the revenue

$$
\Rightarrow(1 / 2)\left(v-v_{i}\right)^{2} \geq 0
$$

which is true.
[Note: not a dominant strategy, only equilibrium]

How do we actually find the solution? In this case through a differential equation:
In order for $s(\cdot)$ to satisfy $v_{i}\left(v_{i}-s\left(v_{i}\right)\right) \geq v\left(v_{i}-\right.$ $s(v)), g(v)=v\left(v_{i}-s(v)\right)$ must be maximized at $v=v_{i}$. Therefore $g^{\prime}\left(v_{i}\right)=0$.

$$
g^{\prime}(v)=v_{i}-s(v)-v s^{\prime}(v)
$$

Therefore $s^{\prime}\left(v_{i}\right)=1-\frac{s\left(v_{i}\right)}{v_{i}}$
This is solved by $s\left(v_{i}\right)=v_{i} / 2$.

So, what can the auctioneer expect to make? Second order statistic of the uniform distribution with 2 samples is $2 / 3$, therefore $1 / 3$.
equivalence theorem: very sketchily, in auctions where the bidder with the highest valuation wins, all bidders are risk neutral, and a couple of other conditions, the seller's expected revenue is the same.

