
About this class

Markov Decision Processes

The Bellman Equation

Dynamic Programming for finding value func-
tions and optimal policies
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Basic Framework

[This lecture adapted from Sutton & Barto
and Russell & Norvig]

The world evolves over time. We describe it
with certain state variables. These variables
exist at each time period. For now we’ll as-
sume that they are observable. The agent’s
actions a↵ect the world. The agent is trying
to optimize reward received over time.

Agent/environment distinction – anything that
the agent doesn’t directly and arbitrarily con-
trol is in the environment.

States, Actions, Rewards, and Transition Model
define the whole problem.

Markov assumption: the next state depends
only on the previous one and the action chosen
(but dependence can be stochastic)
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We’ll usually see two di↵erent types of reward
structures – big reward at the end, or “flow”
rewards as time goes on.

The literature typically considers two di↵erent
kinds of problems: episodic and continuing.

The MDP and it’s partially observable cousin
the POMDP, are the standard representation
for many problems in control, economics, robotics,
etc.

Rewards Over Time

Additive: typically for (1) episodic tasks or fi-
nite horizon problems (2) when there is an ab-
sorbing state.

Discounted: for continuing tasks. Discount
factor 0 < � < 1

U = R(s0) + �R(s1) + �2R(s2) + . . .

Justification: hazard rate, or money tomorrow
not worth as much as money today (implied
interest rate: (1� � 1)).

Average reward per unit time is a reasonable
criterion in some infinite horizon problems.
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MDPs: Mathematical Structure

What do we need to know?

Transition probabilities (now dependent on ac-
tions!)

Pa
ss0 = Pr(st+1 = s0|st = s, at = a)

Expected rewards

Ra
ss0 = E[rt+1|st = s, at = a, st+1 = s0]

Rewards are sometimes associated with states
and sometimes with (State, Action) pairs.

Note: we lose distribution information about
rewards in this formulation.
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Policies

A fixed set of actions won’t solve the problem
(why? nondeterministic!)

A policy is a mapping from (State, Action)
pairs to probabilities.

⇡(s, a) = prob. of taking action a in state s.
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Example: Motion Planning

+1
-1

We have two absorbing states and one square
you can’t get to.

Actions: N, E, W, S.

Transition model: With Pr(0.8) you go in the
direction you intend (an action that would move
into walls or the gray square instead leaves you
where you were). With Pr(0.1) you instead go
in each perpendicular direction.

Optimal policy? Depends on the per-time-step
reward!
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R(s) = �0.04

! ! ! +1
" " -1
"    

What about R(s) = �0.001?
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R(s) = �0.001

! ! ! +1
"  -1
"   #

What about R(s) = �1.7?
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R(s) = �1.7

! ! ! +1
" ! -1
! ! ! "

What about R(s) > 0?
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Policies and Value Functions

Remember ⇡(s, a) = prob. of taking action a

in state s

States have values under policies.

V ⇡(s) = E⇡[Rt|st = s]

= E⇡[
1X

k=0
�krt+k+1|st = s]

It is also sometimes useful to define an action-
value function:

Q⇡(s, a) = E⇡[Rt|st = s, at = a]

Note that in this definition we fix the current
action, and then follow policy ⇡

Finding the value function for a policy:
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V ⇡(s) = E⇡[rt+1 + �
1X

k=0
�krt+k+2|st = s]

=
X

a
⇡(s, a)

X

s0
Pa
ss0[R

a
ss0+�E⇡[

1X

k=0
�krt+k+2|st = s]]

=
X

a
⇡(s, a)

X

s0
Pa
ss0[R

a
ss0+ �V ⇡(s0)]



Optimal Policies

One policy is better than another if it’s ex-
pected return is greater across all states. An
optimal policy is one that is better than or
equal to all other policies.

V ⇤(s) = max
⇡

V ⇡(s)

Bellman optimality equation: the value of a
state under an optimal policy must equal the
expected return of taking the best action from
that state, and then following the optimal pol-
icy.

V ⇤(s) = max
a

E[rt+1 + �V ⇤(s0)|at = a]

= max
a

X

s0
Pa
ss0(R

a
ss0+ �V ⇤(s0))
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Given the optimal value function, it is easy to
compute the actions that implement the opti-
mal policy. V ⇤ allows you to solve the problem
greedily!

Dynamic Programming

How do we solve for the optimal value func-
tion? We turn the Bellman equations into up-
date rules that converge.

Keep in mind: we must know model dynamics
perfectly for these methods to be correct.

Two key cogs:

1. Policy evaluation

2. Policy improvement
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Policy Evaluation

How do we derive the value function for any
policy, leave alone an optimal one?

If you think about it,

V ⇡(s) =
X

a
⇡(s, a)

X

s0
Pa
ss0[R

a
ss0+ �V ⇡(s0)]

is a system of linear equations.

We use an iterative solution method. The Bell-
man equation tells us there is a solution, and it
turns out that solution will be the fixed point of
an iterative method that operates as follows:

1. Initialize V (s) 0 for all s

2. Repeat until convergence (|v � V (S)| < �)

(a) For all states s
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i. v  V (s)

ii. V (s) P
a ⇡(s, a)

P
s0 P

a
ss0[R

a
ss0+�V (s0)]

Actually works faster when you update the ar-
ray in place instead of maintaining two sepa-
rate arrays for the sweep over the state space!

An Example: Gridworld

Actions: L,R,U,D

If you try to move o↵ the grid you don’t go
anywhere.

The top left and bottom right corners are ab-
sorbing states.

The task is episodic and undiscounted. Each
transition earns a reward of -1, except that
you’re finished when you enter an absorbing
state

A

A

What is the value function of the policy ⇡ that
takes each action equiprobably in each state?
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t = 0 :

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

t = 1 :

0 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 0

t = 2 :

0 -1.7 -2.0 -2.0
-1.7 -2.0 -2.0 -2.0
-2.0 -2.0 -2.0 -1.7
-2.0 -2.0 -1.7 0

t = 3 :

0 -2.4 -2.9 -3.0
-2.4 -2.9 -3.0 -2.9
-2.9 -3.0 -2.9 -2.4
-3.0 -2.9 -2.4 0

t = 10 :

0 -6.1 -8.4 -9.0
-6.1 -7.7 -8.4 -8.4
-8.4 -8.4 -7.7 -6.1
-9.0 -8.4 -6.1 0

t =1 :

0 -14 -20 -22
-14 -18 -20 -20
-20 -20 -18 -14
-22 -20 -14 0



Policy Improvement

Suppose you have a deterministic policy ⇡ and
want to improve on it. How about choosing a

in state s and then continuing to follow ⇡?

Policy improvement theorem:

If Q⇡(s,⇡0(s)) � V ⇡(s) for all states s, then:

V ⇡0(s) � V ⇡(s)

Relatively easy to prove by repeated expansion
of Q⇡(s,⇡0(s)).

Consider a short-sighted greedy improvement
to the policy ⇡, in which, at each state we
choose the action that appears best according
to Q⇡(s, a)

⇡0(s, a) = argmax
a

Q⇡(s, a)
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= argmax
a

X

s0
Pa
ss0[R

a
ss0+ �V ⇡(s0)]

What would policy improvement in the Grid-
world example yield?

L L L/D
U L/U L/D D
U U/R R/D D

U/R R R

Note that this is the same thing that would
happen from t = 3 onwards!

Only guaranteed to be an improvement over
the random policy but in this case it happens
to also be optimal.

If the new policy ⇡0 is no better than ⇡ then it
must be true for all s that

V ⇡0(s) = max
a

X

s0
Pa
ss0[R

a
ss0+ �V ⇡0(s0)]

This is the Bellman optimality equation, and
therefore V ⇡0 must be V ⇤.

The policy improvement theorem generalizes
to stochastic policies under the definition:

Q⇡(s,⇡0(s)) =
X

a
⇡0(s, a)Q⇡(s, a)

Policy Iteration

Interleave the steps. Start with a policy, eval-
uate it, then improve it, then evaluate the new
policy, improve it, etc., until it stops changing.

⇡0
E�! V ⇡0 I�! ⇡1

E�! · · · I�! ⇡⇤ E�! V ⇤

Algorithm:

1. Initialize with arbitrary value function and
policy

2. Perform policy evaluation to find V ⇡(s) for
all s 2 S. That is, repeat the following
update until convergence

V (s) 
X

s0
P⇡(s)
ss0 [R⇡(s)

ss0 + �V (s0)]
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3. Perform policy improvement:

⇡(s) argmax
a

X

s0
P⇡(s)
ss0 [R⇡(s)

ss0 + �V (s0)]

If the policy is the same as last time then
you are done!

Takes very few iterations in practice, even though
the policy evaluation step is itself iterative.

Value Iteration

Initialize V arbitrarily

Repeat until convergence:

For each s 2 S

• V (s) maxa
P

s0 P
a
ss0[R

a
ss0+ �V (s0)]

Output policy ⇡ such that

⇡(s) = argmax
a

X

s0
Pa
ss0[R

a
ss0+ �V (s0)]

Convergence criterion: the maximum change
in the value of any state in the state set in the
last iteration was less than some threshold

Note that this is simply turning the Bellman
equation into an update rule! It can also be
thought of as an update that cuts o↵ policy
evaluation after one step...
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Discussion of Dynamic
Programming

We can solve MDPs with millions of states. Ef-
ficiency isn’t as bad as you’ll sometimes hear.
There is a problem in that the state repre-
sentation must be relatively compact. If your
state representation, and hence your number
of states, grows very fast, then you’re in trou-
ble. But that’s a feature of the problem, not
the method.

Asynchronous dynamic programming: a lead
in...

Instead of doing sweeps of the whole state
space at each iteration, just use whatever val-
ues are available at any time to update any
state. In place algorithms.
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Convergence has to be handled carefully, be-
cause in general convergence to the value func-
tion only occurs if we then visit all states in-
finitely often in the limit – so we can’t stop
going to certain states if we want the guaran-
tee to hold.

But we can run an iterative DP algorithm on-

line at the same time that the agent is actually
in the MDP. Could focus on important regions
of the state space, perhaps at the expense of
true convergence?

What’s next? What if we don’t have a correct
model of the MDP? How do we build one while
also acting? We’ll start by going through really
simple MDPs, namely Bandit problems.


