
Optimal Stopping

(Most of this lecture based on Chapter 2 of
Ferguson’s “Optimal Stopping”).

Choose a time to take an action given a se-
quence of observed random variables.

Wish to maximize expected payo↵ or minimize
expected cost

Three (finite-horizon) examples: the Cayley-
Moser Problem, the Secretary Problem, and
the Parking Problem.
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The Cayley-Moser Problem

Buying a house, selling an asset, or searching
for a job.

m objects, with i.i.d. values X1, X2, . . . , Xn

from a known distribution.

At each time i, you get to observe X

i

and then
make a “take it or leave it” decision. If you
take it, you get X

i

as your reward and the pro-
cess is over. If you leave it, search continues.

You will look at least at the first option. If you
reach the nth option you will choose that one.

Let’s suppose X

i

⇠ U [0,1].
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Solving the Problem

What if m = 2? When would you take X1?
When X1 > 0.5.

Can we generalize this? What’s the value of
not choosing X

j

and continuing the search?
Would we rather do that or choose X

j

and
stop?

V

j

= max{X
j

,E(V
j+1)}

Note that the dependence is entirely on the
number of stages left to go. So define A

n�j

=
E(V

j+1). Then:

A0 = �1
A1 = E[X1]

A

j+1 = Emax{X,A

j

}

=
Z

A

j

�1
A

j

dF (x) +
Z 1

A

j

x dF (x)
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Specializing to the uniform [0,1] distribution:

A

j+1 =
Z

A

j

0
A

j

dx+
Z 1

A

j

x dx

= (A2
j

+1)/2

Then A2 = 5/8, A3 = 89/128, . . ..



The Secretary Problem

One position available with n applicants; the
relative ranking is complete.

Applicants are interviewed sequentially in a ran-
dom order, and you have to either hire the ap-
plicant or reject him immediately. There is no
recall.

The only available information is on rank, not
on actual values. Therefore, the decision can
only be based on relative ranks of applicants
interviewed so far.

Objective: select the best applicant. If you do
so, you win. Otherwise you lose.

What do you think the probability of succeed-
ing is, when using an optimal rule with large
n?
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Solving the Secretary Problem

When does it make sense to accept an ap-
plicant? Only when he is best among those
already observed (otherwise lose for sure). We
call such applicants candidates.

When to make an o↵er to a candidate at stage
j? What is the probability of winning with such
a candidate? The same as the probability that
the best of the first j is the best overall: j/n.

Let W

j

be the probability of winning when us-
ing an optimal rule that does not accept any of
the first j applicants. Note W

j

� W

j+1 because
all rules available at j +1 are also available at
j.

It is optimal to stop with a candidate at stage
j if j/n � W

j

. Then it is also optimal to stop
with a candidate at j+1 since (j+1)/n > j/n �
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W

j

� W

j+1. Therefore an optimal rule is of the
form N

r

: “Reject the first r�1 applicants and
then accept the next candidate (relatively best
applicant) if any.”

What is the probability of winning using N

r

?

P

r

=
nX

k=r

Pr(Applicant k is best and selected)

=
nX

k=r

Pr(Applicant k is best)Pr(k is selected | best)

=
nX

k=r

1

n

Pr(best of first k � 1 appears before stage r)

=
nX

k=r

1

n

r � 1

k � 1
=

r � 1

n

nX

k=r

1

k � 1

(where r�1
r�1 represents 1 when r = 1; the third

step is because each applicant is a priori equally
likely to be best, and then we want to make
sure that the best of the first k � 1 does not
appear at a time when we would pick him, that
is from stage r onwards).

Now, we want to choose r so as to maximize
P

r

. Can do this explicitly for small n.

In the limit as n ! 1, let x be r/n and t be k/n.
Then the above expression becomes P (x) =
x

R 1
x

1
t

dt = �x lnx. Take the derivative and set
to zero, and you find that the optimal rule is
to use n/e as the cuto↵, and then the optimal
applicant is selected with Pr(1/e)!



The Parking Problem

Driving along an infinite street (the only one
in the world) to the theater.

Want to park as close to the theater as possi-
ble, and you’re not allowed to turn around.

Assume the street is populated with parking
spots at each integer point on the real line,
and that the theater is located at T > 0. You
are driving towards T from the left. Each spot
is occupied with probability p (i.i.d. Bernoulli
r.v.s)

You can’t see spot j + 1 when you are at j.
Can’t return to a previous spot. If you park at
spot j, you lose |T � j|. If you reach T without
having parked you have to keep driving to the
next open spot past it.
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We can treat this as a finite horizon problem.
If you reach T your payo↵ is 0 if it is available,
and (1 � p) + 2p(1 � p) + 3p2(1 � p) + . . . =
1/(1� p) otherwise.

It’s obvious that if it is optimal to stop at j

then it is optimal to stop at j +1. So we can
use a threshold rule N

r

: continue until you are
r places from the destination and then park at
the first available spot.

How do you compute r? Let P

r

denote the
expected cost using the rule N

r

. Then P0 =
p/(1�p), and P

r

= (1�p)r+pP

r�1. Can show
by induction that

P

r

= r +1+
2pr+1 � 1

1� p

Clearly true for P0. Suppose it is true for r�1.
Then

P

r

= (1� p)r + pP

r�1 = (1� p)r + pr + p(2pr � 1)/(1� p)

= r +1+
2pr+1 � 1

1� p

Now, P
r+1�P

r

= 1�2pr+1. This is increasing
in r, so we want to find the first r for which
this di↵erence is non-negative. So if p  1/2,
get to T before looking. If p = .9, start looking
6 places before the destination.

Variants of Interest

Costly sequential search: can still be infinite
horizon, but pay a cost c in order to sample
the next opportunity.

Search with recall: can go back to previous
opportunities, perhaps up to a few.

Selection of k candidates.
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