
Structure of Optimal Policies

Each policy tree p induces a value function Vp
that is linear in b. Vt is the upper surface of
this collection of functions. Therefore, Vt is
piecewise linear and convex.

Example: suppose there are just two states in
the world. Then the belief state is completely
determined by the probability of being in state
1. Then, for example:

1

When there are three states, belief state is de-
termined by two parameters, and the optimal
value function is a bowl shape composed of
planar facets.

To choose an optimal action in belief state b,
choose the action at the root of the policy tree
p that maximizes b · ↵p (can store the regions
in which each tree is best when constructing
the value function)

In the example above, p1, p2, and p3 are opti-
mal in the three regions where they are bolded.

Computational Issues

First, note that, while it is theoretically possi-
ble for all trees of depth t� 1 to contribute to
the value function at some point in the belief
space, this is not typical. So we restrict our at-
tention to useful or undominated policy trees
of depth t� 1 when building trees of depth t.

Two steps, then: generation of trees of depth
t and then pruning the set to get useful trees.

Generation: Generate superset V+
t of the use-

ful t � 1 step policy trees Vt1. How many ele-
ments are there in this superset? Well, there
are |A| ways of choosing the action. Each can
lead to |⌦| observations, and we can select any
of the subtrees for any of the observations, so:

|A||Vt�1||⌦|

This is bad, and makes it very hard to solve
POMDPs with more than a few states. So

2

there has been a lot of work on approximate
solutions.

Pruning? Can be done using linear program-
ming. One linear program needed for each ele-
ment of the set of policy trees, so doesn’t add
to asymptotic complexity. There are some rel-
atively e�cient methods for doing this.

Representation: basically just need to main-
tain one vector (linear in number of states)
plus one action for each useful policy tree, so
parsimonious.

