
Coming Up With Better Policies

We can interleave policy evaluation with policy
improvement as before.

⇡0
E�! Q⇡0 I�! ⇡1

E�! · · · I�! ⇡⇤ E�! Q⇤

We’ve just figured out how to do policy eval-
uation.

Policy improvement is even easier because now
we have the direct expected rewards for each
action in each state Q(s, a) so just pick the
best action among these

The optimal policy for Blackjack:

1

Usable
ace

No
usable

ace

20

10A 2 3 4 5 6 7 8 9
Dealer showing

Pl
ay

er
 s

um

HIT

STICK 19

21

11
12
13
14
15
16
17
18

π*

10A 2 3 4 5 6 7 8 9

HIT

STICK 20
19

21

11
12
13
14
15
16
17
18

V*

21

10 12

A

Dealer showing Pl
ay

er
 s

um

10

A

12

21

+1

−1

On-Policy Learning

On-policy methods attempt to evaluate the
same policy that is being used to make de-
cisions

Get rid of the assumption of exploring starts.
Now use an ✏-greedy method where some ✏ pro-
portion of the time you don’t take the greedy
action, but instead take a random action

Soft policies: all actions have non-zero proba-
bilities of being selected in all states

For any ✏-soft policy ⇡, any ✏-greedy strategy
with respect to Q⇡ is guaranteed to be an im-
provement over ⇡.

If we move the ✏-greedy requirement inside the
environment, so that we say nature randomizes
your action 1 � ✏ proportion of the time, then

2

the best one can do with general strategies in
the new environment is the same as the best
one could do with ✏-greedy strategies in the
old environment.

Adaptive Dynamic Programming

Simple idea – take actions in the environment
(follow some strategy like ✏-greedy with re-
spect to your current belief about what the
value function is) and update your transition
and reward models according to observations.
Then update your value function by doing full
dynamic programming on your current believed
model.

In some sense this does as well as possible,
subject to the agent’s ability to learn the tran-
sition model. But it is highly impractical for
anything with a big state space (Backgammon
has 1050 states)

3

Temporal-Di↵erence Learning

What is MC estimation doing?

V (st) (1� ↵t)V (st) + ↵tRt

where Rt is the return received following being
in state st.

Suppose we switch to a constant step-size ↵

(this is a trick often used in nonstationary en-
vironments)

TD methods basically bootstrap o↵ of exist-
ing estimates instead of waiting for the whole
reward sequence R to materialize

V (st) (1� ↵)V (st) + ↵[rt+1 + �V (st+1)]

(based on actual observed reward and new state)

This target uses the current value as an es-
timate of V whereas the Monte Carlo target

4

uses the sample reward as an estimate of the
expected reward

If we actually want to converge to the opti-
mal policy, the decision-making policy must
be GLIE (greedy in the limit of infinite explo-
ration) – that is, it must become more and
more likely to take the greedy action, so that
we don’t end up with faulty estimates (this
problem can be exacerbated by the fact that
we’re bootstrapping)

Q-Learning: A Model-Free
Approach

Even without a model of the environment, you
can learn e↵ectively. Q-learning is conceptually
similar to TD-learning, but uses the Q function
instead of the value function

1. In state s, choose some action a using pol-
icy derived from current Q (for example,
✏-greedy), resulting in state s0 with reward
r.

2. Update:

Q(s, a) (1�↵)Q(s, a)+↵(r+�max
a0

Q(s0, a0))

You don’t need a model for either learning or
action selection!

As environments become more complex, using
a model can help more (anecdotally)

5

Generalization in Reinforcement
Learning

So far, we’ve thought of Q functions and utility
functions as being represented by tables

Question: can we parameterize the state space
so that we can learn (for example) a linear
function of the parameterization?

V✓(s) = ✓1f1(s) + ✓2f2(s) + · · ·+ ✓nfn(s)

Monte Carlo methods: We obtain sample of
V (s) and then learn the ✓’s to minimize squared
error.

In general, often makes more sense to use an
online procedure, like the Widrow-Ho↵ rule:

6

Suppose our linear function predicts V✓(s) and
we actually would “like” it to have predicted
something else, say v. Define the error as
E(s) = (V✓(s) � v)2/2. Then the update rule
is:

✓i ✓i � ↵
@E(s)

@✓i

= ✓i + ↵(v � V✓(s))
@V✓(s)

@✓i

If we look at the TD-learning updates in this
framework, we see that we essentially replace
what we’d “like” it to be with the learned
backup (sum of the reward and the value func-
tion of the next state:

✓i ✓i + ↵[R(s) + �V✓(s
0)� V✓(s)]

@V✓(s)

@✓i

This can be shown to converge to the closest
function to the true function when linear func-
tion approximators are used, but it’s not clear

how good a linear function will be at approxi-
mating non-linear functions in general, and all
bets on convergence are o↵ when we move to
non-linear spaces.

The power of function approximation: allows
you to generalize to values of states you haven’t
yet seen!

In backgammon, Tesauro constructed a player
as good as the best humans although it only
examined one out of every 1044 possible states.
Caveat: this is one of the few successes that
has been achieved with function approximation
and RL. Most of the time it’s hard to get a
good parameterization and get it to work.

