
CSE 516: Homework 2

Due: March 10, 2016

Note: Please keep in mind the collaboration policy as specified in the course syllabus. If you
discuss questions with others you must write their names on your submission, and if you use any
outside resources you must reference them. Keep in mind that homework (in hardcopy) is due
at the beginning of lecture. Grading will take into account how clearly you communicate your
solutions, so please write your answers up carefully. There are seven questions on three pages.

1. (10 points) Subgame perfection warmup: Consider the following game in extensive form:

What are the pure-strategy Nash equilibria of this game (when you consider it in normal
form)? Are any of them not subgame perfect? Why?

2. (20 points) A very unfair final: 15 people show up for the final exam in CSE 777, “Gamifi-
cation”. The instructor orders them by their current score in the class, with the person with
the highest score first and the person with the lowest score last (there are no ties). So now
let’s say Student 1 is the highest scoring, Student 2 the second highest, etc. In this order, they
play a splitting game of the following form. 100 points are to be split between the students,
with only integer splits allowed. Student i gets to propose a split among all the remaining
students (students i through 15). Now all the remaining students (i through 15) vote on the
split. If it gets at least 50% of the votes (therefore, ties are broken in favor of the proposal)
the proposal is accepted and the proposed split constitutes the scores of the students on the
final. If the proposal is rejected, the student who proposed it receives an F for the course
(which is a strictly worse outcome for all students than receiving 0 on the final) and leaves
the game, and student i+1 gets to make the next proposal. (Note: You can assume anything
you want about how agents choose among options they are indifferent among, as long as
you state what you’re assuming clearly.)

(a) What is the (subgame perfect) outcome of this game?
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(b) How does this change if ties are now broken in favor of rejecting the proposal?

3. (15 points) Consider a game with n players, each of whom has a task to complete. These
tasks take time t1, . . . , tn respectively. There are m machines available, and each player has
to choose one machine to send her task to, so ai ∈ {1, . . . ,m}. The utility of each player is
given by the negative of the total load of the machine she chose, that is ui(a) = −

∑
aj=ai

tj .
Prove that this is a potential game (hint: try using the sum of squares of machine loads as
the potential function).

4. (15 points) Consider the following schematic traffic flow diagram.

Over here, t denotes the travel time on a particular road while T denotes the number of
agents that choose that road. The edges are labeled with the time it takes to traverse each
edge. The road from Node A to Node B is an extremely fast superhighway with negligible
travel time (assume that it is in fact 0). Each agent wishes to get from the start to the end as
quickly as possible. Formulate this game in terms of the agents, actions, and utilities, and
show that it is a congestion game. What is a pure strategy Nash equilibrium of this game
when there are 4000 agents playing? What would happen if we closed the road from A to B?

5. (10 points) Consider the following game in normal form:

H T E
H 1,−1 −1, 1 −1,−1
T −1, 1 1,−1 −1,−1
E −1,−1 −1,−1 −1,−1

Are there any pure strategy Nash equilibria in this game? If so, what are they? Are there any
weakly dominated strategies? What would happen if you followed the iterated elimination
of weakly dominated strategies in this game?

6. (15 points) On selling and rebuying I’m auctioning off a book. Everyone in class receives
a private signal si of the value of the book, and these signals are uniformly distributed in
[0,M ]. I’m going to run an auction where everyone gets to write down her or his bid bi for
the book on a piece of paper (along with his or her name), and put it in an envelope. I will
sell the book to the highest bidder at her or his bid, bi, but immediately buy it back from
him or her at a price equal to the average of all the signals each individual received. Find a
Bayes-Nash equilibrium for this game, where each bid bi is a linear function of the received
signal si.
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7. (15 points) Alternating ultimatums Consider the following variant of the ultimatum game.
Alice can make an offer to Bob to split a reward of 1 (the units are really large, say on the
order of $1M, but it’s convenient to think of it as one unit). She makes some offer a ∈ [0, 1]
and Bob decides whether to accept or not (here a is the amount Alice keeps, with Bob getting
the rest). If Bob accepts, they receive the utility from that split. However, if Bob rejects,
then he gets to make the next offer – he offers Alice some b ∈ [0, 1] and then she has to
decide whether to accept or not (b being the amount that Bob keeps). If she rejects, then
she gets to make the next offer again, and so on forever. There is one more twist. Utilities
are discounted, so that one unit some t rounds in the future is only worth γt (γ ∈ (0, 1)) of
one unit now (so, for example, if Alice accepts an offer of 1/2 three rounds from now, after
her offer is rejected and Bob’s next offer and her next offer are also both rejected, then she
receives utility (from her current perspective) of γ3(1/2)).

Show that the following strategies are a subgame perfect equilibrium: At any time, Alice
offers a∗ = 1/(1+ γ) and accepts any b ≤ b∗, while Bob offers b∗ = 1/(1+ γ) and accepts any
a ≤ a∗.

For 2 points and 10000 MASEcoins of extra credit, show that for any x ∈ [0, 1], there is some
Nash equilibrium of the game where the reward of 1 is divided as x going to Alice and 1− x
going to Bob (γ is set arbitrarily).
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