Market Making Recap

- A market maker is always willing to trade
- Sets bid and ask prices: $b_t < a_t$
- May have to take risks, hold inventory, trade against more informed people, etc.
- De facto standard in prediction markets: the Logarithmic Market Scoring Rule (LMSR) (Hanson 2003, 2007; Chen & Pennock 2007)
 - -Loss-making, but bounded loss
 - -Many nice theoretical properties
 - -Can be unstable, depending on a key parameter

Bid and Ask Prices

- Market-maker faces a censored learning problem
- Two parts
 - -Inference given bid and ask prices
 - -How to set bid and ask prices

A Reinforcement Learning Perspective

Prices are actions; trades are signals

A specific model: universe of traders with normally distributed beliefs about the true value (arrive sequentially)

$$w_t = V + \epsilon_t$$

Buy if $w_t > a_t$, sell if $w_t < b_t$

MM attempts to infer V

-- State space is functional: belief distribution on V

[Das, Quant. Fin 05, AAMAS 08]

Inference: State Space Updates

Let F_{ϵ} be the c.d.f. of the valuation distribution. Then, outcome probabilities are:

$$q_t(V; b_t, a_t) = \begin{cases} 1 - F_{\epsilon}(a_t - V) \\ F_{\epsilon}(a_t - V) - F_{\epsilon}(b_t - V) \\ F_{\epsilon}(b_t - V) \end{cases} \xrightarrow{\bullet} \begin{bmatrix} \operatorname{High} \\ \operatorname{signal} \\ \operatorname{Mid \ signal} \\ \operatorname{b} \\ \operatorname{b} \\ \operatorname{signal} \\ \operatorname{signal} \\ \operatorname{signal} \\ \operatorname{signal} \\ \operatorname{signal} \\ \operatorname{b} \\ \operatorname{signal} \\ \operatorname{signal} \\ \operatorname{signal} \\ \operatorname{signal} \\ \operatorname{signal} \\ \operatorname{signal} \\ \operatorname{b} \\ \operatorname{signal} \\ \operatorname{si$$

Bayesian update

$$p_{t+1}(v) = p_t(v) \frac{q_t(v; b_t, a_t)}{\mathcal{A}_t}$$

Inference: Computing the Next State

Gaussian prior

Problem: not conjugate for censored observations

-- Posterior is no longer Gaussian

Enforce Gaussian-ness: extract mean and variance of the true updated distribution and match moments

$$\begin{array}{lll} \mu_{t+1} & = & \mu_t + \sigma_t \cdot \frac{B}{A} \\ \\ \sigma_{t+1}^2 & = & \sigma_t^2 \left(1 - \frac{AC + B^2}{A^2} \right) \end{array}$$

(A, B, and C are integrals of various forms of Gaussians)

State update is monotonic!

$$\sigma_{t+1}^2 \leq \sigma_t^2$$

Price Setting

Profit maximizing strategies

-- Monopolist MM (NYSE) => long-term (sequential) profit maximization

-- Competitive MMs (NASDAQ) => zero-expected profit pricing (Glosten & Milgrom, 1985; Kyle, 1985)

+ market designer could design it this way for liquidity provision

$$b_t = \mathbb{E}[V|\text{Sell}] = \frac{\int dv \quad v p_t(v) F_{\epsilon}(b_t - v)}{\int dv \quad p_t(v) F_{\epsilon}(b_t - v)}$$

In the Gaussian case:

$$b_t = \mu_t - q\sigma_\epsilon \sqrt{1 + \rho^2}$$

where $\rho = \frac{\sigma}{\sigma_\epsilon}$ and $q = \frac{\rho^2}{1 + \rho^2} \frac{N(q)}{1 - \Phi(q)}$

Price Setting: Optimal Monopolist

- Exploration vs. exploitation: prices as sources of both information and profit
- Monotonic variance update: allows efficient, single-sweep DP solution

Discussion

- NYSE and NASDAQ used to debate the merits of monopoly vs competition between market makers.
 - NYSE: a monopolist can ``maintain a fair and orderly market" in the face of market shocks
- Glosten (1989) showed that monopolists can provide greater liquidity under asymmetric information by averaging expected profits across different trade sizes.
- We show that this can hold true with fixed trade sizes in a multi-period setting because of the exploration/ exploitation tradeoff

3 Experiments

- For validation in practice: compare with the standard LMSR MM in various scenarios
 - -1. Human subjects playing a 10-15 minute trading game ("Bouncing Balls")
 - -2. Trading agents competing in a simulated market ("Trading Agents")
 - -3. Human traders participating in a months-long field experiment ("Instructor Ratings")

A Short Detour

Making the market maker practical involves making it adaptive to jumps in the true value

Time

A Solution

Prob. of an observed sequence of trades

$$L(\mu,\sigma) = \int_{-\infty}^{\infty} N(v,\mu,\sigma) \cdot \prod_{i=1}^{s} \left(\Phi(z_i^+,v,\sigma_\epsilon) - \Phi(z_i^-,v,\sigma_\epsilon) \right) dv$$

Was this sequence more likely under MM's current belief variance or an increased variance?

•If the latter, double the variance of current belief

Big benefits:

•Relative measure, not too sensitive to window size

•Rapid adaptivity

¹¹ [Brahma, Chakraborty, Das, Lavoie & Magdon-Ismail, ACM EC 2012]

Evaluation Metrics

- Profit/Loss
 - Average
 - Maximum loss (or other risk measures)
- Liquidity provided (measured by spread)
- "Correctness" of the markets
 - RMSD of prices versus "true value"
 - RMSD in equilibrium phase of the market (after price convergence)

Experiment 1: Bouncing Balls

- Humans trade simultaneously in two markets, without knowing which market maker is involved in each one
- They trade on the proportion of times a ball will fall off one or the other edge in a "gambler's ruin" game

Example 1: True Value Constant

Example 2: True Value Jumps

Results

- BMM provides more liquidity and takes less losses (in 5 out of 6 experiments and on average) in doing so than LMSR
- Also provides a more stable price that is closer to the true value

Expt	BMM	LMSR
1	47231	-1350
2	8973	-1511
3	4084	-1602
4	-10589	-2619
5	9135	-3169
6	35376	1798
6*	20226	-92

Profits

	A	
Expt	BMM	LMSR
1	4.04	3.12
2	3.21	3.06
3	0.74	3.22
4	1.42	3.61
5	0.80	2.84
6	1.33	3.77

Spreads

Experiment 2: Trading Agents

- Trading bots with access to slowly improving information on coin flip outcomes
 - Simulates "Bouncing Balls"
- Fundamentals Traders
- Learning ("RE") Traders
- Technical Traders (Moving Average and Range)

	Average profit		Spread		RMSD		RMSDeq	
	bmm	lmsr	bmm	lmsr	bmm	lmsr	bmm	lmsr
10%	-823.74	-1915.51	2.38	2.35	16.09	19.27	5.97	6.63
40%	16630.89	-1496.90	1.24	1.94	12.19	12.95	3.58	6.30
60%	23630.75	-1097.00	1.06	1.88	10.81	14.05	3.10	6.15
100%	-295.61	-3055.04	0.94	1.95	9.28	8.42	3.04	4.87
RE40%	34494.88	-2008.72	1.62	2.02	13.32	14.61	4.87	4.59
m RE60%	25223.28	-2312.65	1.28	1.99	11.60	12.05	3.62	4.81
RE100%	-738.83	-3077.43	1.03	1.98	9.67	9.10	3.15	4.56

Experiment 3: Instructor Rating Markets

- Each course has a security liquidating from 0 to 100
 - Market orders through a market making algorithm

• Two-week rating periods

- Trading accounts start with initial fake money, shares
- Students in each course rate their instructor
- Markets liquidate based on this rating
- Prizes
 - 4 Rank-based
 - 1 Rating participation

[Chakraborty, Das, Lavoie, Magdon-Ismail & Naamad, AAAI 2013]

Experiment 3 Results

MM	#Periods	Avg profit	Max loss	Std. dev. of prices	Dev. from next liquidation
LMSR	25	1338.99	-5298.58	8.6	16.9
BMM	15	8273.13	-13763.40	3.0	9.6

Market outcomes

Prices incorporate new information

- Linear model predicting future liquidations
 - Previous liquidation
 - Market price average
- Price average is more predictive
 - R-squared (0.58 vs. 0.48)
 - Previous liquidations insignificant in linear model

$$\mathrm{Liq}_{s,\rho} = \beta_1 \mathrm{Liq}_{s,\rho-1} + \beta_2 \mathrm{Price}_{s,\rho} + \alpha$$

α est.	β_1 est.	β_2 est.	Sample Size
7.02	0.17	0.72 **	40
		**p < 0.01	

Raters provide new information

We know which traders are raters for a class ("in class").

How do we tell the informational difference between "in class" and "out of class" traders?

Examine trades that originate at prices in-between previous and future liquidations

• Results:

- In-class traders: toward future liquidations 54% of the time (significantly > 50%)
- Out of class traders: toward future liquidations only 48% of the time (significantly < 50%)

IRM ratings are real

• Correlation of IRM and official department evaluations

- Seven computer science courses
- Last three trading periods
- Ratings 0.86
- Prices 0.75
- Prices predict ratings, ratings predict evaluations despite:
 - Smaller sample sizes
 - Manipulation potential