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Abstract

Much research has been done to apply auctions, markets, and
negotiation mechanisms to solve the multiagent task alloca-
tion problem. However, there has been very little work on
human-agent group task allocation. We believe that the no-
tion of bounty hunting has good properties for human-agent
group interaction in dynamic task allocation problems. We
use previous experimental results comparing bounty hunting
with auction-like methods to argue why it would be particu-
larly adept at handling scenarios with unreliable collaborators
and unexpectedly hard tasks: scenarios we believe highlight
difficulties involved in working with humans collaborators.

1 Introduction
Robots and agents currently operate in limited capacities
in our daily lives. In the future, however, as these interac-
tions increase and become more complex, many real world
problems will involve more than one human and agent in-
teracting and collaborating in non-obvious ways. Present
approaches in Multiagent Systems (MAS) and Multirobot
Systems (MRS) often only consider agent-agent interactions
or robot-robot interactions, but many real-world situations
that robots will encounter will involve humans. Although
there has been little research into the ergonomics of MAS
and MRS, the knowledge gained from these fields is ripe
for translation into the more complex domain of multiple
human-agent environments.

We are interested in the interaction between humans and
multiple agents. In this paper we will focus on multiagent
task allocation, where the problem is to determine how to
assign tasks to agents in order to maximize the system utility.
Research in this area largely focuses on auction and market
based methods where agents bid their valuation of the task
and the winner is allocated the task (Korsah, Stentz, and Dias
2013). Recently there has been work done in motivating an
alternative mechanism, bounty hunting (Wicke, Freelan, and
Luke 2015; Wicke, Wei, and Luke 2016). Here we will argue
for the benefits of bounty hunting as a model for multiple
agents in mixed agent-human scenarios.

In bounty hunting, multiple agents may independently
attempt to complete various available tasks: task ownership
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is not exclusive. When a task becomes available, it is assigned
a gradually-increasing bounty which an agent will win only
if it completes the task before any other agent does. An agent
may commit to work on at most one task at a time, and the
fact that it has committed to a task is known to all agents.
An agent may also abandon tasks, or lose a task if it was
completed by someone else first. Agents quickly learn to
divvy up the space of tasks according to which agent is most
adept at completing it.

This paper first motivates the need for considering the
bounty hunting approach to task allocation by arguing from
a human perspective. We further consider approaches to
multiagent task allocation and the current state of the art in
human-agent group and human-robot coordination. We then
give a more formal description of bounty hunting. Finally,
we will argue through our previous experiments that certain
key features, such as non-exclusivity and intuitive alloca-
tion based on committing to tasks for rewards, make bounty
hunting well suited for human-agent group systems.

2 Motivation for Bounty Hunting
in Mixed Human-Agent Environments

As we argue later, bounty hunting’s non-exclusivity is well
suited to how humans approach tasks. Indeed bounty hunting
is a human notion, used in everything from “have you seen
this lost dog” signs, to modern-day bail enforcement agents.
Non-exclusivity means there is no need for any special mech-
anisms to handle human-agent negotiation, nor protocols for
performing multiple tasks simultaneously, and this reduces
the human-agent communication load. This is in strong con-
trast to auctions, where tasks are allocated exclusively and
the agents will be directly affected by the decisions of the
humans. Additionally, bounty hunting’s flexibility might be
particularly useful when coordinating with humans who often
juggle multiple tasks, such as in the healthcare field where
nurses must handle multiple patients and tasks simultane-
ously (Garrett and Caldwell 2006).

We think that bounty hunting is also more intuitive than
auctions from a human perspective, since it can be difficult
to formulate a bid for a task. In an auction, agents bid their
valuation for a task, and this valuation is an estimate for how
difficult it will be for them to complete. Humans, however,
tend to experience the planning fallacy, wherein they under-



estimate how long a task will take them to complete (Buehler,
Griffin, and Ross 1994). This may then lead to misallo-
cating tasks that might be better done by another human
or agent. Additionally, humans bidding in auctions against
other humans exhibit the winner’s curse, in which humans
end up paying more for an item than it is worth (Malhotra
and Bazerman 2008). Other research suggests that the effect
of the winner’s curse is reduced when a human bids against
only computer agents, rather than only other humans (Van
Den Bos et al. 2008). Nevertheless, in a sufficiently com-
plex multiple human-agent scenario, the winner’s curse may
come into play. We discuss in Section 5 experiments that we
conducted in past work, which exhibit qualities of both the
winner’s curse and the planning fallacy, and examine their
effects on bounty hunters and auction agents.

3 Prior Task Allocation Research
The problem of task allocation is very common in the real
world. Examples include tasking firefighters with putting
out fires, or tasking volunteers with organizing a food pantry
or delivering food, both of which are subject to research
in MAS, but currently lack human-factors research (Santos
and Bazzan 2011; Aleksandrov et al. 2015). Integrating
humans into the task allocation problem is necessary in order
to advance this goal in more realistic scenarios, though it
of course can significantly complicate the problem. The
following brief overview of current research in multiagent
and multirobot task allocation, as well as work in human-
agent task allocation problems, will clarify this need.

Multiagent and Multirobot Task Allocation A taxon-
omy of solutions to the general multiagent task allocation
problem has been offered (Gerkey 2004) with three major
dimensions: the type of task, the type of agent, and the
information available to determine task assignment. This
taxonomy has recently been improved to classify more task
allocation problems, like those where tasks have dependen-
cies (Korsah, Stentz, and Dias 2013). Current solution meth-
ods include centralized approaches using k-armed bandits,
integer programming, genetic algorithms, and combinato-
rial optimization; and decentralized approaches like auctions,
markets, and task swapping.

The most common decentralized approach, auctions, were
popularized by MURDOCH, an auction method which fo-
cused on minimizing resource usage, task completion time,
and communication overhead (Gerkey and Matarić 2002).
This approach trusted agents to truthfully bid their task valua-
tions, though sensor noise or an unknown environment could
cause their bids to be inaccurate. TraderBots, another auction
framework, was designed to be more flexible and extensible
(Jones et al. 2006). CoMutaR merged multiagent task alloca-
tion with coordination through the use of auctions under the
assumption of truthful agents (Shiroma and Campos 2009).

Markets have also been used in multi-robot task alloca-
tion (Pustowka and Caicedo 2012; Schneider et al. 2005).
There are many similarities between auctions and markets as
they both rely on the agents bidding on tasks. Another ap-
proach is token-passing (Farinelli et al. 2005). This method,

like auctions and markets, also assumes task exclusivity. But
like some market methods, it allows the tasks to be reassigned
by passing the token to other agents. Bounty hunting has
not been used as a mechanism for multiagent task allocation
except in our past work (Wicke, Freelan, and Luke 2015;
Wicke, Wei, and Luke 2016).

Human-Agent Task Allocation There are a number of
points of interaction when dealing with human-agent task
allocation. Tasks may be allocated to humans and agents
for independent completion based off of the human prefer-
ences. However, human preferences may have unintended
negative team results, such as overall inefficiency (Gombolay,
Huang, and Shah 2015). Additionally, the interaction may be
at a decision support level where the agent assists the human
in selecting which task to complete. Max-Sum, Multiagent
Markov Decision Processes (MMDPs), and Partially Observ-
able Markov Decision Processes (POMDPs) have been stud-
ied as ways to allocate tasks in human-agent task allocation
systems (Delle Fave et al. 2012; Ramchurn et al. 2015; 2016;
Roncone, Mangin, and Scassellati 2017). However, these
methods use a decentralized optimization method (Max-Sum)
or a centralized planner (MMDP or POMDP) rather than a
multiagent algorithm to allocate tasks. These studies have
also shown from an ergonomics perspective that transparency
is critical. Knowing which tasks and roles the robots will
take on is important for human operators (Roncone, Mangin,
and Scassellati 2017).

4 Bounty Hunting
The bounty hunting framework applied to a dynamic task
allocation problem is defined by the tuple 〈A,S, I,Q,M〉
and a bondsman that assigns to the task a base bounty b0
and a bounty rate r (see (Wicke, Freelan, and Luke 2015)
for details on setting base bounty and bounty rate). We have
a set of bounty hunting agents A : {a1, a2, ...} whose goal
is to maximize the expected bounty per timestep they will
receive by completing tasks. We define a set of task classes
S : {S1, S2, ...}, and for each such task class Si, there exists
a set of possible tasks {Ii,1, Ii,2, ...} of that class which might
appear. We will presume that at most one task of a given
class will be posted at any time. At a given timestep t there
is a set Q(t) of uncompleted tasks available for the bounty
hunters to complete. These tasks are indexed by the integers
1, 2, ..., i, .... We define agent commitment to a task at time
t and the bounty the agent will receive when they complete
the task by Mt : A× {Q(t) ∪ {�}} → R, where we define
the empty task as {�} which has no bounty.

Committing does not imply exclusivity: other agents may
and can commit to work on the same task. Further, if for
some reason an agent was not able to complete tasks, their
bounty would rapidly rise to the point that other agents would
be incentivized to take the tasks from them. In our previous
work we have shown that it is rational for agents to pursue
tasks and not to wait indefinitely (Wicke, Freelan, and Luke
2015).

Non-exclusivity can be inefficient. In (Wicke, Freelan, and
Luke 2015; Wicke, Wei, and Luke 2016) we have studied
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Figure 1: Experiment 1, Static Environment, 200,000 steps.
Lower values are better. Legends are read from left to right
corresponding to the plots top to bottom.

how the agents may rapidly learn to divvy up the task space
according to which agents are most efficient at each task.
Our metric is based on the sum total bounty on outstanding
tasks at any time: this is minimized by completing as many
tasks as rapidly as possible, so their bounty does not climb.
We compared bounty hunting against several other methods,
including two exclusive methods, one of which was an auc-
tion based approach, where agents bid for tasks based on
the bounty and were exclusively allocated the tasks by the
auctioneer.

5 Bounty Hunting and Human-Agent Teams:
Argument from Past Experiments

The non-exclusivity of the bounty hunting model, its dynamic
incentive structure, and the agents’ ability to adapt, combine
to make bounty hunting effective at dealing with even quite
noisy and dynamic scenarios. We argue that these same
features may enable bounty hunters to work effectively with
inconsistent, unpredictable, or confused human collaborators
experiencing the winner’s curse and the planning fallacy.

To make this argument we will draw from some past ex-
periments we have done in bounty hunting in dynamic envi-
ronments (Wicke, Wei, and Luke 2016). In that test scenario,
four robots live on a small soccer field, and as balls appear
randomly on the field the robots chase after and retrieve the
balls. Balls fell into certain task classes according to loca-
tions in which they appeared on the field, and the robots
rapidly learned to divvy up the field so as not to overly com-
pete for tasks. A task (a ball) was posted with a bounty of
100, and thereafter the bounty increased by 1 each timestep
until the task was completed.

We focused on an adaptive bounty hunter algorithm which
can abandon tasks, called SimpleJump. We compared it
to ComplexP, a previously-studied high-performing bounty
hunter algorithm which could not abandon tasks after com-
mitting, and to Auction, an auction-like exclusive method.

Experiment 1 was the baseline comparison: while balls

Auction ComplexP SimpleJump

0 500 1000 1500 2000
3200

3400

3600

3800

4000

4200

4400

4600

Timesteps (1/100)

T
ot
al
B
ou
nt
y

Figure 2: Experiment 4, Unreliable Collaborators, 200,000
steps. Lower values are better. Legends are read from left to
right corresponding to the plots top to bottom.
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Figure 3: Experiment 5, Unexpectedly Hard Tasks, 200,000
steps. Lower values are better. Legends are read from left to
right corresponding to the plots top to bottom.

would appear randomly on the field, the environment did
not change dynamically in any significant way, nor did the
makeup or nature of collaborators. Here non-exclusivity
should show little advantage. Figure 1 shows how all
three techniques converged: SimpleJump edged out Auction
largely due to its ability to abandon tasks, but the difference
between the three was relatively small.

Experiments 2, 4, and 5 tested agents in different dynam-
ically changing environments. We draw two to show here:
Experiment 4 involved unreliable collaborating agents, and
Experiment 5 involved unexpectedly and suddenly difficult
tasks. We think that both experimental scenarios match natu-
rally with human involvement.

We begin with Experiment 4. Here two additional collabo-
rators were added: these collaborators committed to (or bid
heavily for) tasks entirely at random and moved 10x slower
than the other agents. In many respects these collaborators
modeled humans grabbing arbitrary tasks and performing



poorly at them. Also, in some sense this experiment focuses
on the winner’s curse. In the winner’s curse scenario, humans
bid amounts unrelated to the true value of the task. Unre-
liable agents bidding highly at random simulates the noise
generated by humans experiencing the winner’s curse.

The results in Figure 2 show that even with these unreli-
able collaborators the SimpleJump bounty hunting method
could maintain functionality at a similar level to the baseline
(Experiment 1). But the auction mechanism’s performance
was considerably degraded.

In Experiment 5, with a 10% probability a given task would
be unexpectedly 10x harder for a randomly-selected agent to
do. This is similar in effect to the planning fallacy, because
the agents believe that it will take less time to complete
a task than it actually takes. Obviously this would prove
problematic for an exclusive method; but task abandonment
would also be of benefit.

Exactly this is shown in Figure 3. Here, while SimpleJump
is not able to maintain the same efficiency as the baseline,
its performance is still statistically better than the auction
mechanism, and also better than ComplexP.

6 Conclusion and Future Work
We have motivated the need to further study multiagent task
allocation approaches for human-agent groups by pointing to
the pitfalls such as the winner’s curse and the planning fallacy,
which appear due to human behavior. We have reviewed the
literature on task allocation methods in multiagent systems
and we have examined current research in human-agent task
allocation. We have argued that bounty hunting is particularly
well suited to the challenge of human-agent task allocation
by reviewing previous experimental results in light of human-
agent groups. Our findings suggest that since bounty hunting
is robust, intuitive, and the tasks are non-exclusive that bounty
hunting best accommodates the weaknesses and styles of
human collaborators. We propose that further research into
implementing bounty hunting for human-agent groups is
needed to better understand the effect of non-exclusive tasks
and the interaction between adaptive agents and humans.
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