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Abstract Multi-agent systems (MASs) is an area of distributed artifi-
cial intelligence that emphasizes the joint behaviors of agents with some
degree of autonomy and the complexities arising from their interactions.
The research on MASs is intensifying, as supported by a growing num-
ber of conferences, workshops, and journal papers. In this survey we give
an overview of multi-agent learning research in a spectrum of areas, in-
cluding reinforcement learning, evolutionary computation, game theory,
complex systems, agent modeling, and robotics.

MASSs range in their description from cooperative to being competitive
in nature. To muddle the waters, competitive systems can show appar-
ent cooperative behavior, and vice versa. In practice, agents can show
a wide range of behaviors in a system, that may either fit the label of
cooperative or competitive, depending on the circumstances. In this sur-
vey, we discuss current work on cooperative and competitive MASs and
aim to make the distinctions and overlap between the two approaches
more explicit.

Lastly, this paper summarizes the papers of the first International work-
shop on Learning and Adaptation in MAS (LAMAS) hosted at the fourth
International Joint Conference on Autonomous Agents and Multi Agent
Systems (AAMAS’05) and places the work in the above survey.

1 Introduction

Multi-agent systems (MASs) is an area of distributed artificial intelligence that
emphasizes the joint behaviors of agents with some degree of autonomy and the
complexities arising from their interactions. The research on MASs is intensify-
ing, as supported by a growing number of conferences, workshops, and journal
papers. This book of the first International workshop on Learning and Adapta-
tion in MAS (LAMAS), hosted at the fourth International Joint Conference on
Autonomous Agents and Multi Agent Systems (AAMAS’05), is a continuation
of this trend.



The goal of the LAMAS workshop was to increase awareness and interest
in adaptive agent research, encourage collaboration between Machine Learning
(ML) experts and agent system experts, and give a representative overview of
current research in the area of adaptive agents. The workshop served as an in-
clusive forum for the discussion of ongoing or completed work concerning both
theoretical and practical issues. More precisely, researchers from the multi-agent
learning community presented recent work and discussed their newest ideas for
a first time with their peers. An important part of the workshop was dedicated
to model MASs for different applications and to develop robust ML techniques.
Contributions cover on how an agent can learn using ML techniques to act indi-
vidually or to coordinate with one another towards individual or common goals.
This is an open issue in real-time, noisy, collaborative and possibly adversarial
environments.

This introductory article has a twofold goal. The first is to give a broad
overview of current MASs research. We present our overview of MASs research
from the two main perspectives to be found in the literature; the cooperative and
competitive perspective. Secondly, we briefly present an overview of the included
papers and invited contributions and place them in the global context of ongoing
research.

In cooperative systems, as suggested by the label, the agents pursue a com-
mon goal. Such systems are characterized by the fact that the designers of the
MAS are free in their design of the agents. The agents can be built and learn
with extensive knowledge of the system and the agents can expect benevolent
intentions from other agents. Note that we do not claim that it is easy to design
a cooperative MAS to have good emergent behavior, on the contrary!

In contrast to cooperative MASs, agents in a competitive MAS setting have
non-aligned goals, and individual agents seek only to maximize their own gains.
Recent work in competitive MASs has aimed at moving Reinforcement Learning
(RL) techniques from the domain of single-agent to multi-agent settings. There is
a growing body of work, algorithms and evaluation criteria, which we cover in the
second part of our survey. Furthermore, this section also covers a growing body
of work on non-cooperative agents [189] for economical and societal settings that
have received increasing interest only in recent years. Such agents have their own,
possibly conflicting goals and aim for local optimization. Their owners can e.g. be
competing companies or autonomous departments within a bigger organization,
where the multi-agent systems should facilitate trading, allocation, or planning
between these owners, e.g. by means of negotiation or auctioning.

The rest of this document is structured as follows. Section 2 first informally
introduces agents playing simple matrix games. We use this section to initially
introduce the concepts of play, and whether the agents can be labeled as coopera-
tive, competitive, or as something in between. Section 3 presents our overview of
cooperative MASs. Section 4 continues with our overview of competitive MASs.
Sections 3 and 4 are intended to be largely self contained, although there are
cross-links between the sections. Section 5 presents the papers of this LAMAS
proceedings and places this work in the context of the survey of MASs work,



Sections 3 and 4. Lastly, Section 6 concludes with an agenda of future research
opportunities for MASs. Appendix A includes some basic Game Theory (GT)
concepts universal to the domain of cooperative and competitive MASs as a
general background for readers not familiar with the subject.

The next section continues with a discussion on the labels of cooperative and
competitive as applied to MASs.

2 Agents classified as Cooperative or Competitive

Multi-Agent Systems range in their description from cooperative to being com-
petitive in nature. To muddle the waters, competitive systems can show apparent
cooperative behavior, and vice versa. In practice, agents in a system, depending
on the circumstances, can show a wide range of behaviors that may either fit
the label of cooperative or competitive.

The fundamental distinction between systems labeled as cooperative or com-
petitive is that for the former the agents are designed with as goal the maximiza-
tion of a group utility. Competitive agents are solely focused on maximizing their
own utility. We, in this section, label the agents as either utilitarian or selfish
to stress more their intention, i.e. their design goal, than their actual behavior.
For example, a competitive/selfish agent may cooperate with other agents in a
temporary coalition. The selfish intentions of the agent are met due to a larger
expected reward from cooperation. On the other hand, a cooperative/utilitarian
agent may seem competitive if it accidentally hogs a resource to the detriment
of other agents in its group. In complex cooperative systems, agents can easily
hinder the other agents as the complexity of the interactions increase. The label
utilitarian or selfish stresses more the intentional stance of the agent (and of its
designer), as opposed to its apparent behavior.

The utilitarian stance for cooperative systems, as already mentioned in the
introduction, is also reflected in the design of the agents. Commonly, a coopera-
tive system is designed by one party (be that one designer or a team) to achieve
a set of agreed upon goals. The behavior, or the algorithm that learns the be-
havior of the agents, is largely under the control of the designers of the system.
This allows for possible intricate coordination to be a priori implemented in the
system and many interactions in the system can be anticipated. An agent can
essentially expect good intentions from other agents in the system. This is not
the case for the competitive setting. Each agent is created by separate designers
that all aim to achieve their own goals. This makes cooperation between selfish
agents, even if this is rational, a more difficult and risky task. The designer of a
competitive agent must also expend effort in considering the types of exploitive
behavior that will be encountered. This distinction in design of agents for a co-
operative or competitive setting must be kept in mind when choosing the range
of strategies the agents can choose from.



2.1 Setting

In the following, we give a sample of the type of interactions that can be observed
between agents. We discuss how these are a consequence of the utilitarian or
selfish intentional stance.

We restrict our discussion to the well known two-agent, two-action matrix
games. For a complete taxonomy we refer the reader to [132]. Of importance is
that the listed games give an exhaustive overview of the types of settings that
the agents can encounter. This gives a sound basis to inspect how agents can
handle these types of games, both from the utilitarian and the selfish stance. We
can then classify the agent behavior as either (apparent) cooperative, (apparent)
competitive, or indistinguishable.

[132] classifies games from the perspective of selfish agents; the agents focus
on maximizing their own gain, i.e. their private utility. Game theoretical notions
prevail in the discussion of the choice of strategies of the agents. We take a
slightly broader view and also focus on utilitarian agents and how they would
play in the selected games. Utilitarian agents focus on achieving the highest
possible group utility, i.e. the sum of their individual rewards.

Note that we only consider play between two selfish agents or between two
utilitarian agents. We consider either a system of agents where all agents are
intended to achieve a common goal, or a system of agents where all agents
expect the worst. We do not cover the intricacies of a cooperative system that
has to deal with selfish agents. For a more complete discussion of this topic, we
refer the reader to [106] and Section A for a discussion on Evolutionary Stable
Strategies.

The agents in the games know the complete payoff matrices. They know their
own reward and that of their opponents for all joint actions'. They simultane-
ously must choose an action and receive their part of the reward based on the
picked joint action. What they may not know is how the other agent, be that a
malicious opponent or a benevolent agent, will play.

Note that we here as yet restrict ourselves to the single play of the presented
matrix games. Agents may also have to learn these payoffs during repeated play
of the game. We will give examples of this, along with a more formal treatment,
in Section 4. After this initial exposition, we discuss how the choice of strategies
can change due to repeated play.

2.2 Types of Games

From the viewpoint of selfish agents, [132] broadly classifies the matrix games as
either trivial, games of no conflict, games of complete opposition, or as games of
partial conflict. The latter is also called a mixed motive game. We discuss each
of the categories below. For each category, we sketch the game, give an example,
and discuss how selfish and utilitarian agents would cope with the game.

1 Agents in most Game Theory literature know the payoff matrix before play



Trivial games: In trivial games (TG), the expected reward of an agent does not
depend on the choice of action of the other agent. In Table 1, we show such
a trivial game. The Row player can choose either action Al or Bl while the
Column player can choose from actions A2 or B2. The items in the table show
the rewards for the Row player and Column player respectively for choice of
action Ai or Bi respectively. For this game, the rewards of one player are not
influenced by the choice of actions of the opponent. Such a game is therefore
not of great interest in terms of formulating a best strategy. This strategy is
based on what they think they should play given the logical action chosen by
the opponent, a non-issue in this case.

TG[A2[B2
Al]2,22,2
B1[2,2[2,2

Table 1. A trivial game

Due to the simple nature of this game, there is no intrinsic difference in play
between utilitarian and selfish agents.

No conflict games: In no-conflict games (NCG), both players benefit from choos-
ing one, unambiguous joint action. Neither player benefits, in terms of individual
rewards, by deviating from this logical choice. Consider the game in Table 2:

NCG[A2[B2
Al [4,4]23
Bl [3,22,2

Table 2. A no-conflict game

Both the Row and Column player prefer the joint action A1A2 (we give
first the Row, and the Column player action) as this gives the most individual
reward. Neither player has an incentive to choose another action when the sole
goal is maximizing the private utility for selfish agents. A1A2 is also the logical
choice of action for the utilitarian players. We stress that in both cases, the
Row and Column player individually choose A1 and A2 respectively without
prior negotiations; the players base their individual choice solely on their own
strategic reasoning.

Note that the Row player may prefer to play B1A2 when the Row player
aims to maximize the relative utility of play; the Row player wants to have more
utility than the Column player. This aspect is not an issue for utilitarian players.



As for trivial games, there is little difference in play between utilitarian and
selfish agents. One distinction that can be made is that a utilitarian row player
will not pick action B1 as such a player is not interested in achieving a higher
reward than the other player. More importantly, this choice of action will lower
the utility of the group and should be avoided.

Games of Complete opposition (also known as zerosum games): In games of
complete opposition (CO), the gain of one agent is a loss for the other agent.
The Table 3 shows a typical zerosum game (rewards for one joint action sum to
0). These games are characterized by fierce competition. On average, an agent
can expect to have zero reward.

CO[A2] B2
A1[0,0[2,-2
B1|1,-1]-3,3

Table 3. A game of complete opposition

For selfish players, games of complete opposition are a difficult scenario. The
best strategy for an unknown opponent, from a game theoretical viewpoint, is
to play a random strategy; all actions are equally probable. More technically,
this is a mixed strategy. See Section A for a more formal definition. For two
utilitarian agents, the game is also problematical as coordination of joint actions,
by definition of a zerosum game, will not lead to a higher aggregated reward.

Games of Partial Conflict Mized Motive Games: Games of partial conflict (PC)
allow for both agents to choose profitable actions, but the agents prefer different
joint actions. The latter point is the distinction between the no-conflict games
and the mixed-motive games. We give an example in Table 4.

PC1[A2] B2
Al |2,7]-1-10
Bl |1,-5] 10,1

Table 4. A partial conflict game

The Row agent prefers joint action B1B2. The Column agent prefers joint
action A1A2. Blindly choosing B1 by the Row player and A2 by the Column
player results in joint action B1A2 that is preferred by neither player.

Games of partial conflict are difficult for selfish agents. Optimal play is
achieved through a mixed strategy that maximizes expected utility. This aspect
is handled in more detail in Appendix A.



Utilitarian agents that have as goal to maximize the group utility have a more
clearcut strategy; choose the joint action that maximizes the total utility. For
Table 4, joint action B1B2 is the clear choice. For Table 5, the utilitarian agents
are however faced with the choice of playing joint action A1A2 or B1B2. The
agents must however make their choices individually, with no a priori information
of the action that will be played by the other agent.

PC2[A2[B2
Al [33[1,1
Bl [1,1|3,3

Table 5. A second no-conflict game

2.3 Repeated Play

The above section has presented play for agents for single shot play of a selection
of typical matrix games. We now focus on how the game can change if two agents
repeatedly play the same game. Repeated play opens opportunities, especially
to selfish agents, not available in single shot play of the game.

Force-vulnerable or Threat-vulnerable: [132] lists two opportunities in repeated
play for selfish agents. Games can be threat-vulnerable or force-vulnerable. A
player is called a disgruntled if he fails to achieve his most preferred outcome
in initial play of the game. For example, the outcome for the disgruntled Row
player is A1A2. Two cases can be distinguished: (i) Row’s largest payoff is in
A1B2; and (ii) Row’s largest payoff is in B1B2.

Consider the first case. Row can only achieve this desired outcome if the
Column player shifts away from the original outcome while Row sticks to Al.
Now by threatening to shift unilaterally to B1, Row can effect an outcome where
Column gets a smaller payoff than if Column where to shift unilaterally. This
game is hence threat-vulnerable. The Row player can induce the Column player
to switch by threatening to play an action that is even less preferred by the
Column player.

For the second case, suppose now that Row’s payoff in B1B2 is larger than
in A1A2. The Column player can be induced to switch to this joint action if
first the Row player actually switches to play B1. The Column player may then
switch to B2 if the payoff for the Column player in B1B2 is higher than the
payoff in B1A2. Such a game is called force-vulnerable.

Ezxploitation: In repeated play a player may learn about the strategy of the op-
ponent. For example, in the games of complete opposition, the Row player may
learn that the Column player is not purely random and has a slight bias for play-
ing B2. This gives the Row player the opportunity to play action A1 more often



for payoff Table 3. For the single shot game, Game Theoretical considerations
lead the Row player to play a perfect random strategy for the game of complete
opposition. This behavior can change in repeated play as one player learns more
of the opposing player and exploitation opportunities are observed.

Threat or Retributive strategies: We have discussed how games may be threat
vulnerable. More generally, solutions to games that are not reachable in single
play can be achieved in iterated play due to the possibility of retributive actions.
A famous example is the Tit-for-Tat strategy [7] in iterated play of the Prisoner’s
Dilemma, of which an example is shown in Table 6:

PD [A2/C[B2/D
A1/C| 33 | 05
B1/D| 50 | 1,1

Table 6. A Prisoner’s Dilemma game

Players receive a reward for jointly cooperating (A1A2), but receive a higher
reward by unilaterally defecting (A1B2 or B1A2). The players however achieve
a lower reward for a joint defection (B1B2). The dominant strategy in the single
shot version of the game is to defect, due to the reasoning that the opponent
will defect.

In repeated play of the game, a higher reward can be achieved by both play-
ers, be they selfish or utilitarian, by repeatedly jointly cooperating. Defections
may be less common as a player has the possibility to threaten to punish a de-
fection with defections of its own. This is encoded in the Tit-for-Tat strategy
that initially starts the game by cooperating. A defection by the opponent is
punished by a defection in the next round of play. The Tit-for-Tat player then
reverts to playing cooperation until the next defection by the opponent. Play-
ers can achieve a high individual reward over multiple trials of the game, while
the threat of retribution guards the player against exploitation by a malicious
opponent.

In general, in repeated play, joint solutions of the game by selfish players are
possible that are not apparent in single shot play of the game. Future interactions
between agents allow for strategies that incorporate threats against exploitation,
and at the same time allow for risky joint play.

Give and take: For the games of partial opposition, i.e. the mixed motive games,
two agents are each able to gain in each round of play. The agents however
have opposed preferences for the choice of joint actions in terms of received
individual reward. Repeated play of the same game allows for give and take
by both players to achieve a higher aggregated reward than if both players
aggressively continuously strive for their own preferred action.



In Table 7, two utilitarian players are indifferent between play of A1A2,
A1B2, or B1A2. As long as B1B2 is not played, the two agents together reap
the highest possible reward. The situation is more complex for two selfish agents.

GT[A2[B2
Al(3,3[2.4
B1]4,2[2,2

Table 7. A game of Give and Take

Two selfish agents are indifferent between A1A2 — A1A42, A1B2— B1A2, and
B1A2— A1B2 played over two iterations of the game. Both would prefer to receive
a reward of 8 over two iterations; the row player would prefer B1A2 — B1A2
to be played. There is however the risk of playing B1B2 if the column player
reasons in a similar manner. The utilitarian players can unilaterally choose to
play the safe action A1 and A2 respectively for the role of Row and Column
player as they are only concerned about the group utility.

The selfish players have basically also the above choice; repeatedly play A1A2
as a safe, guaranteed joint action. They can also settle for the option of the
more complex interleaving of B1A2 with A1B2. The selfish agents are indifferent
between the two strategies in terms of expected reward, although the latter
interleaving is more difficult to achieve. For the strategy of repeated play of
A1A2, both selfish agents have an incentive to deviate. The row player can
unilaterally switch to B1 and the Column player can decide to unilaterally switch
to B2 to try to reap the higher reward. This can lead the players to wind up
playing B1B2, where neither player has a strong incentive to unilaterally switch
back.

Observe once again Table 4. Two selfish agents should play A1A42 19—4 of the
time and B1B2 15—4 of the time for both agents to reap the same average reward.
This is a difficult coordination pattern to achieve. This pattern however achieves
a higher reward than any mixed strategies the agents can choose due to the risk
of penalties for actions A1B2 and B1A2. Unilaterally striving for their own
preferred action by the Row or Column player will lead to lower reward than
for the fine grained coordination. The game in Table 5 is hence a challenge for
selfish algorithms.

In this section, we have sketched the differences between cooperative and
competitive agents using simple matrix games. We have discussed the intricacies
that arise when classifying the behavior of an agent from the perspective of single
play of a game, and the possible changes in behavior for repeated play of the
same game. Sections 3 and 4 then delve into the existing literature covering the
state-of-the-art research on cooperative and competitive MASs.



3 Cooperative MASs

In this section, we will focus on the application of machine learning to problems
in the MAS area. Machine learning explores ways to get a machine agent to dis-
cover on its own, often through repeated trials, how to solve a given task. Machine
learning has proven a popular approach to solving multi-agent systems problems
because the inherent complexity of many such problems can make solutions by
hand prohibitively difficult. Automation is attractive. We will specifically focus
on problem domains in which the multiple agents are cooperating to solve a joint
task or to maximize utility; as opposed to competing with one another. This
is covered in Section 4. We call this specific subdomain of interest cooperative
multi-agent learning. Despite the relative youth of the field, the number of co-
operative multi-agent learning papers is large, and we hope that this survey will
prove helpful in navigating the current body of work.

We argue there are two major categories of cooperative multi-agent learning
approaches. The first one, team learning, applies a single learner to search for
behaviors for the entire team of agents. Such approaches are more along the
lines of traditional machine learning techniques, but they may have scalability
problems as the team size increases. To keep the search space manageable, team
learning techniques might assign identical behaviors to multiple team members.

A second category of techniques, concurent learning, uses multiple concurrent
learning processes. Rather than learning behaviors for the entire team, concurent
learning approaches typically employ a learner for each team member, in the
hope that this reduces the joint space by projecting it into N separate spaces.
However, the presence of multiple concurrent learners makes the environment
non-stationary, which is a violation of the assumptions behind most traditional
machine learning techniques. For this reason, concurent learning requires new
(or significantly modified versions of) machine learning methods.

The last section covers inter-agent communication.

3.1 Team Learning

In team learning, there is a single learner involved: but this learner is discovering
a set of behaviors for a team of agents, rather than a single agent. Team learning
is an easy approach to multi-agent learning because it can use standard single-
agent machine learning techniques: there is a single entity that performs the
learning process. Unfortunately, team learning may have problems when scaling
to complex domains involving large numbers of agents: given an environment
with S states, a team with N agents might be in as many SV states (assuming
multiple agents might be in the same state). This explosion in the state space size
can be overwhelming for learning methods that explore the space of state utilities
(such as reinforcement learning), but it may not as drastically affect techniques
that explore the space of behaviors (such as evolutionary computation) [80, 140,
145]. For such reasons, evolutionary computation seems easier to scale up, and
it is by far the most widely used team learning technique.



Team learning may be divided into two broad categories: homogeneous and
purely-heterogeneous team learning. Homogeneous learners develop a single agent
behavior which is used by every agent on the team. Purely-heterogeneous team
learners develop a unique behavior for each agent - such approaches hold the
promise of better solutions through agent specialization, but they must cope with
larger search spaces. There exist approaches in the middle-ground between these
two categories: for example, divide the team into groups, where group mates
share the same behavior. We refer to these as hybrid team learning methods.

Choosing among these approaches depends on whether specialists are needed
in the team or not. Balch? [9] suggests that domains where single agents can
perform well (for example, foraging) are particularly suited for homogeneous
learning, while domains that require task specialization (such as robotic soccer)
are more suitable for heterogeneous approaches. Potter et al [127] suggest that
the number of different skills required to solve the domain, and not domain
difficulty, is a determinant factor requiring a heterogeneous approach.

Homogeneous Team Learning The assumption that all agents have the same
behavior drastically reduces the learning search space. Research in this area in-
cludes analyses of the performance of the homogeneous team discovered by the
learning process [68], comparisons of different learning paradigms [140], or the
increased power added by indirect [131] and direct [83] communication abilities.
Learning rules for cellular automata is an oft-overlooked paradigm for homoge-
neous team learning (a survey of this area is presented in [109]).

Purely-Heterogeneous Team Learning In heterogeneous team learning, the team
is composed of agents with different behaviors, with a single learner trying to
improve the team as a whole. This approach allows for more diversity in the team
at the cost of increasing the search space. The bulk of research in heterogeneous
team learning has concerned itself with the requirement for or the emergence
of specialists. For example, Luke and Spector [98] compares different strategies
for evolving heterogeneous team behaviors. Their results show that restricted
breeding (preventing cross-breeding of behaviors for different specialists) works
better than unrestricted breeding, which suggests that the specialization allowed
by the heterogeneous team representation conflicts with the inter-agent genotype
mixture allowed by the free interbreeding. However, the question is not fully
answered, as the contradictory result in [69] shows.

Hybrid Team Learning In hybrid team learning, the set of agents is split into
several groups, with each agent belonging to exactly one group. All agents in a
group have the same behavior. One extreme (a single group), is equivalent to
homogenous team learning, while the other extreme (one agent per group) is
equivalent to heterogeneous team learning. Hybrid team learning thus permits
the experimenter to achieve some of the advantages of each method. Luke et al

2 Although both the work of Balch and that of Potter et al employ concurrent learning
processes, their findings are particularly apropos to our discussion here.



compare the fully homogeneous results with a hybrid combination that divides
the team into six groups of one or two agents each, and then evolves six behaviors,
one per group [97]. Although homogeneous teams performed better, the authors
suggest that hybrid teams might have outperformed the homogeneous ones given
more time. Hara and Nagao [67] introduce a method that automatically discovers
the optimum number of groups and their compositions.

3.2 Concurrent Learning

The most common alternative to team learning in cooperative multi-agent sys-
tems is concurrent learning, where multiple learning processes attempt to con-
currently improve parts of the team. Most often, each agent has it own unique
learning process to modify its behavior.

Concurrent learning and team learning each have their champions and de-
tractors. While concurrent learning outperforms both homogeneous and hetero-
geneous team learning in [30, 79], team learning might be preferable in other
situations [108]. When then would each method be preferred over the other?
Jansen and Wiegand [81] argue that concurrent learning may be preferable in
domains for which some decomposition is possible and helpful, and when it is
useful to focus on each subproblem to some degree independently of the others.

The central challenge for concurrent learning is that each learner is adapting
its behaviors in the context of other co-adapting learners over which it has no
control. In single-agent scenarios (where traditional machine learning techniques
are applicable), a learner explores its environment, and while doing so, improves
its behavior. Things change with multiple learners: the agents’ adaptation to
the environment can change the environment itself in a way that makes that
very adaptation invalid. This is a significant violation of the basic assumptions
behind most traditional machine learning techniques.

There are three directions in concurrent learning research. First, research on
the credit assignment problem deals with how to apportion the team reward to
the individual learners. Second, there are challenges in the dynamics of learning.
Such research aims to understand the impact of co-adaptation on the learning
processes. Third, some work has been done on modeling other agents in order to
improve the interactions (and collaboration) with them.

3.3 Credit Assignment

When dealing with multiple learners, one is faced with the task of divvying
up among them the reward received through their joint actions. The simplest
solution is to split the team reward equally among each of the learners, or in a
larger sense, divide the reward such that whenever a learner’s reward increases
(or decreases), all learners’ rewards increase (decrease). This credit assignment
approach is usually termed global reward.

There are many situations where it might be desirable to assign credit in a
different fashion, however. Clearly if certain learners’ agents did the lion’s share
of the task, it might be helpful to specially reward those learners for their actions,



or to punish others for laziness. Similarly, Wolpert and Tumer [197] argue that
global reward does not scale well to increasingly difficult problems because the
learners do not have sufficient feedback tailored to their own specific actions.
In other situations credit assignment must be done differently because global
reward cannot be efficiently computed, particularly in distributed computation
environments. For example, in a robotics foraging domain, it may not be easy
to globally gather the information about all items discovered and foraged.

If team reward is not equally divided among the agents, what options are
there, and how do they impact on learning? One extreme is to assess each agent’s
performance based solely on its individual behavior. This approach discourages
laziness because it rewards agents only for those tasks they have actually accom-
plished. However, agents do not have any rational incentive to help other agents,
and greedy behaviors may develop. We call this approach local reward.

Balch [8, 10] argues that local reward leads to faster learning rates, but
not necessarily to better results than global reward. Using local reward leads to
better performance in a foraging domain and to worse performance in a simulated
soccer domain, as compared to global reward. A few other credit assignment
schemes have been proposed as well. Chang et al [33] take a different approach
to perform credit assignment: each agent employs a Kalman filter to compute
its true contribution to the global reward. Rather than apportion rewards to an
agent based on its contribution to the team, one might instead apportion reward
based on how the team would have fared differently were the agent not present.
Wolpert and Tumer [197] call this the Wonderful Life Utility, and argue that it
is better than both local and global reward, particularly when scaling to large
numbers of agents.

The wide variety of credit assignment methods have a significant impact on
our coverage of research in the dynamics of learning, which follows in the next
section. Our initial focus will be on the study of concurrent learning processes in
fully cooperative scenarios, global reward is used. But other credit assignment
schemes may run counter the researchers’ intention for the agents to cooperate,
resulting in dynamics resembling general-sum or even competitive games, which
we also discuss in the next section.

3.4 The Dynamics of Learning

When applying single-agent learning to stationary environments, the agent ex-
periments with different behaviors until hopefully discovering a globally optimal
behavior. In dynamic environments, the agent may at best try to keep up with
the changes in the environment and constantly track the shifting optimal be-
havior. Things are even more complicated in multi-agent systems, where the
agents may adaptively change each others’ learning environments. We believe
two tools have the potential to help model and analyze the dynamics of con-
current learners across multiple learning techniques. The first one, Evolutionary
Game Theory, EGT was successfully used to study the properties of cooperative
coevolution [48, 195], to visualize basins of attraction to Nash equilibria for co-
operative coevolution [121], and to study trajectories of concurrent Q-learning



processes [176, 166]. The other tool combines information on the rate of be-
havior change per agent, learning and retention rates, and the rate at which
other agents are learning as well, to model and predict the behavior of existing
concurrent learners.

Many studies in concurrent learning have investigated the problem from a
game-theoretic perspective. A important concept for such investigations is that
of a Nash equilibrium, which is a joint strategy (one strategy for each agent)
such that no single agent has any rational incentive (in terms of better reward)
to change its strategy away from the equilibrium. As the learners do not usually
have control over each others’ behaviors, creating alliances to escape this equi-
librium is not trivial. For this reason, many concurrent learning methods will
converge to Nash equilibria, even if such equilibria correspond to suboptimal
team behaviors.

Fully Cooperative Scenarios Research in simple stateless environments shows
that multiple cooperating concurrent learners can greatly benefit from being
optimistic about their teammates: the goal is not to match well your current
teammates, but to expect them to improve as well due to their learning [85,
122]. Scaling up to environments with states is computationally demanding.
Wang and Sandholm [185] present the Optimal Adaptive Learning algorithm,
which is guaranteed to converge to optimal Nash equilibria if there are a finite
number of actions and states; unfortunately, the time required for the algorithm
to achieve such optimality guarantees may be exponential in the number of
agents. Environments where the state can only be partially observed (usually due
to the agents’ limited sensor capabilities) represent even more difficult (also more
realistic) settings. The task of finding the optimal policies in partially observable
Markov decision process (POMDP) is PSPACE-complete [124], and it becomes
NEXP-complete for decentralized POMDPs [17]. Preliminary research for such
domains is presented in [125, 114].

General Sum Games Unequal-share credit assignment techniques can inadver-
tently place learning in rather non-cooperative scenarios. For such reasons, gen-
eral sum games are applicable to the cooperative learning paradigm, even though
in some situations such games may not be in any way cooperative. Following
the early work of Littman [92], there has been significant recent research in
concurrent (and not necessarily cooperative) learning for general-sum games
[26]. Concurrent learning algorithms for such settings® range from Nash-Q [76],
Friend-or-Foe Q-learning [93], EXORL ([161]), Correlated-Q [62], to WolF [27].

3.5 Teammate Modeling

A final area of research in concurrent learning is teammate modeling: learning
about other agents in the environment so as to make good guesses of their ex-
pected behavior, and to act accordingly (to cooperate with them more effectively,

3 The algorithms are usually tested on general-sum and competitive domains, and
only very rarely in cooperative problems.



for example). For example, agents may use Bayesian learning to create models
of other agents, and use such models to anticipate their behavior [32]. Suryadi
and Gmytrasiewicz [162] present a similar agent modeling approach consisting
of learning the beliefs, capabilities and preferences of teammates. As the cor-
rect model cannot usually be computed, the system stores a set of such models
together with their probability of being correct, given the observed behaviors
of the other agents. On the other hand, modeling teammates is not a must for
better coordination [146]. Finally, Wellman and Hu suggest that the resulting
behaviors are highly sensitive to the agents’ initial beliefs, and they recommend
minimizing the assumptions about the other agents’ policies [192].

3.6 Learning and Communication

For some problems communication is a necessity; for others, communication may
nonetheless increase agent performance. We define communication very broadly:
altering the state of the environment such that other agents can perceive the
modification and decode information from it. Among other reasons, agents com-
municate in order to coordinate more effectively, to distribute more accurate
models of the environment, and to learn subtask solutions from one another.

But are communicating agents really multi-agent? Stone and Veloso argue
that unrestricted communication reduces a multi-agent system to something
isomorphic to a single-agent system [160]. They do this by noting that without
any restriction, the agents can send complete external state information to a
“central agent”, and to execute its commands in lock-step, in essence acting as
effectors for the central agent.

Explicit communication can also significantly increase the learning method’s
search space, both by increasing the size of the external state available to the
agent (it now knows state information communicated from other agents), and
by increasing the agent’s available choices (perhaps by adding a “communicate
with agent ¢” action). As noted in [40], this increase in search space can hamper
learning an optimal behavior by more than communication itself may help.

Direct Communication Many agent communication methods employ, or assume,
an external communication method by which agents may share information
with one another. The method may be constrained in terms of throughput, la-
tency, locality, agent class, etc. Examples of direct communication include shared
blackboards, signaling, and message-passing. The literature has examined both
hard-coded communication methods and learned communication methods, and
their effects on cooperative learning overall. Tan [169] and Berenji and Vengerov
[15] suggest that cooperating learners can use communication to share differ-
ent knowledge about the environment in order to improve team performance.
Other research provides the agents with a communication channel but does not
hard-code its purpose; the task is for the agents to discover a language for com-
munication [183].



Indirect Communication Indirect communication methods are those which in-
volve the implicit transfer of information from agent to agent through modifica-
tion of the world environment. Examples of indirect communication include: leav-
ing footsteps in snow, leaving a trail of bread crumbs in order to find one’s way
back home, and providing hints through the placement of objects in the environ-
ment (perhaps including the agent’s body itself). Much of the indirect commu-
nication literature has drawn inspiration from social insects’ use of pheromones
to mark trails or to recruit other agents for tasks [75]. Pheromones are chemi-
cal compounds whose presence and concentration can be sensed by fellow insects
[22], and like many other media for indirect communication, pheromones can last
a long time in the environment, though they may diffuse or evaporate. Several
pheromone-based learning algorithms have been proposed for foraging problem
domains (such as [110]).

This section has presented cooperative MASs. The next section continues
with MASs from a competitive perspective.

4 Competitive MASs

4.1 Preamble

The previous section has presented an overview of the literature concerning
cooperative MASs. These systems are characterized by the fact that the agents
implicitly or explicitly have as common goal to work together. The agents are
benevolent and choose actions to promote the overall utility of the system. This
is not an easy task, as discussed in Section 3, but the programmers of the agents
in principle are free to design the agents that cooperate and truthfully exchange
information to promote the desired cooperation. This is however not the case for
more competitive settings where the individual agents have non-aligned goals.

Competition in inherent in human interaction. The field of economics is
founded on this principle. Game Theory is an analytical offshoot where the
goal is to mathematically analyze the strategies required for detailed scenarios,
smaller in domain than usually encountered in economics. Electronic Agents in
competitive settings have been introduced and studied for broadly two types of
settings that we cover here:

— E-commerce;Market-Based Games; bargaining/negotiations, markets and
market mechanisms, and auctions.
— Multi-Agent RL (MARL) usually for more restricted settings; matrix games.

The above two distinctions are not exhaustive for the field of competitive
agents as a whole. They are however two dominant streams of research. We
treat each in a separate section below, although there are overlaps.

4.2 Design of adaptive software agents for Market-Based
multi-agent games

General Non-cooperative agents [189] for economical and societal settings, or
competitive agents for short, received increasing interest only in recent years.



Such agents have their own, possibly conflicting goals and aim for local opti-
mization. Their owners can e.g. be competing companies or autonomous de-
partments within a bigger organization, where the multi-agent systems should
facilitate trading, allocation, or planning between these owners, e.g. by means
of negotiation or auctioning.

Due to the advances in the use of Internet technology, providing technology
for autonomous or competitive parties has become crucial, both for computer
science and for its applications [123, 82]. For competitive agents in a multi-agent
system, the question is how such a system can work properly. Here, inspired
by economics, competitive games appear to be important. Several important
problems have very recently been addressed.

A game is given by a set of rules regarding some players that interact with
each other, and it determines who gets which payoff at the end [18, 54, 111, 118,
119]. Examples are negotiation, auctioning, formation of interaction networks
between parties, production decisions in an oligopoly economy, or planning and
scheduling with self-interested parties [89, 138, 4]. In this section, we focus on
prominent competitive games as above (i.e., games between competitive players
4)), viz. market games, and in particular, we mainly consider various types of
negotiation and auctioning.

Various forms of negotiations and auctions exist. Examples of negotiation
[18, 111, 19] are one-issue negotiations and multi-issue negotiation (dealing with
just one or with multiple issues, respectively); bilateral negotiations between
two parties; one party that negotiates simultaneously with multiple other par-
ties about one or more goods; etcetera. Similarly, many types of auctions exist
[89], such as classical auctions like the English ascending bid auction, the Dutch
clock auction, the single sealed bid second price auction (Vickrey auction); multi-
issue auctions; double auctions (buyers and sellers bid simultaneously, as in many
financial markets); reverse auctions (procurement auctions); combinatorial auc-
tions (for the allocation of a collection of multiple goods) [142]; etcetera.

In these market games, participating agents have to determine several as-
pects. Of course, the direct values of the bid or the bidding strategy is important
to be determined. Similarly, other aspects can be important to get to good bid-
ding behavior, like models of the (changing) preferences of the opponents in the
market games, the (changing) actual strategies used by the opponents, or the
actual value of the good at hand (e.g. being private, common, with externalities
or with complementarities).

Some of the auctions have the properties that strategic behavior by the
agents is filtered out and therefore not relevant: the “truth-revealing” auctions
(e.g., Vickrey auctions, and VCG auctions: Vickrey-Clark-Grooves). Most mar-
ket games, however, allow strategic behavior by agents to influence the outcomes
of these games. Also, the bidding process in “truth-revealing auctions” becomes
strategy-dependent as well at the moment that these auctions appear in a re-
peated or concurrent fashion (e.g. [16, 43]). An example is formed by simulta-

4 We thus do not only address with “competitive games” the special constant-sum
game, but the more general class of games played by competitive agents



neous auctions on the Internet, all dealing with similar goods, where an agent
just needs to acquire one good. Therefore, strategy determination is important
for agents playing in these multiple market games.

Thus, strategies, information and knowledge related to the market games are
needed for individual agents. These are studied in fields like game theory and
micro economics [18, 54, 111, 102]. Although recent game theory gives valuable
insights, its settings and results are often highly stylized, and not applicable in
or powerful enough for multi-agent systems [82, 44].5

Relations to other disciplines Related scientific disciplines are (evolutionary)
game theory and economics. For competitive game settings with the above de-
scribed characteristics, strategies and relevant knowledge for competitive soft-
ware agents are not readily available from these disciplines, as already indicated
above. In general, these disciplines address such settings at a higher abstraction
level, while not taking into account the actual computational tractability of and
learnability of strategies and related parameters. Issues address especially how
and which equilibria can be reached or obtained [144, 53], for more idealized and
abstract settings of learning in repeated games [53, 187] (with e.g. the usage of
mathematical Bayesian rules ¢ or coordinated learning in stylized games). This
does not concern computational efficiency (or tractability) considerations, but
rather whether strategies are computable (i.e., on Turing machines) [53, 112, 49].
Some of the insights, however, can be used for multi-agent systems, thus espe-
cially at a higher abstraction level or for more stylized settings, including the
use of impossibility results.

Adaptive Solutions Participation of an agent in one competitive game cannot
be seen in its isolation, is interdependent of e.g. the future and the past, and of
e.g. slowly unraveling information about e.g. allocations, interdependencies, and
(private) valuations. The strategy of an agent should thus be adaptive. This is
also due to the limited capabilities of agents, as is also acknowledged by modern
game theory and economics, stating that agents are not fully rational:

— the players in the market games are heterogeneous agents which are bound-
edly rational [139, 150, 6]: diverse agents that e.g. have only partial (incom-
plete) information (and knowledge) and limited computing power. ”

Thus solutions to compute adaptive strategies are needed [82, 178]: adap-
tive solutions, which build on experience, and which determine, adapt and learn
strategies and related models and knowledge. Adaptive solutions determine the
strategies via appropriate models, that contain the strategy variables as well as
other appropriate parameters, representations, and relationships, and for which

5 We will briefly further discuss the relevance of the areas (evolutionary) game theory
and (micro-) economics later.

6 e.g. with infinite positive priors distributions.

7 This does of course not only affect an agent because of its own abilities, but also via
the abilities of its opponent agents.



parameter settings have to be determined by intelligent computational tech-
niques.

Since market games are more context dependent than e.g. matrix games,
the issues that must be learnt can be broader than for matrix games. Actually,
market games are often embedded in some sort of (application) setting, which
determines some of the opponent types and preferences, or e.g. some of the
repeated game settings. Depending on the closeness of the market game to an
application setting, the game settings can be considered to be more fundamental,
applicable or even applied.

Learning Agents Feasible adaptive techniques for agents playing in market games
are e.g. fuzzy techniques, evolutionary algorithms, various (learning) heuristics,
neural networks, simulated annealing, and graphical models. Combining compet-
itive agent systems and learning techniques for market-based games is currently
appearing as one of the important ways to go in the research on multi-agent
systems.

Until now, several papers on adaptive strategies on single or multiple com-
petitive games in multiagent systems have appeared. Papers mainly presenting
various kinds of heuristics, with possibly fuzzy or probabilistic models, are e.g.
[5, 1, 23, 44, 45, 77, 72, 100, 116, 134, 21, 152, 154, 56, 180, 57]. Results with
fully learning approaches as well as a focus on multiple competitive games have
been rather limited until now. We will give some representative references in the
sequel.

Typically, learning should be done in some kind of “multiple” settings. I.e.,
learning can be done in the “classical” way of repeated one-shot games, or one
game with one opponent during the stepwise progress of the game. However, due
to the tight connections with the economic and social application fields, learning
can and should also be done in e.g. repeated interrelated games or concurrent
games, learning while playing against e.g. multiple opponents, or about multiple
goods. We will encounter instances in the sequel.

Opponent Modeling In several settings, opponent modeling can be of impor-
tance in order to derive good game outcomes [45, 154, 155, 88, 91, 137, 136].
In such models, (approximations of) preferences of opponents are represented,
which can form the base for the actual agent strategy. This is especially im-
portant, when trade-offs between game outcomes between the different players
can be made and some kind of Pareto-efficiency is involved, e.g. like in multi-
issue negotiation. Opponent models can be determined for one opponent or for a
class (type) of opponents. In the latter case, a distinction can be made between
starting with a pre-existing opponent model (offline modeling) vs. starting from
scratch and learning opponent models while repeatedly playing games (online
modeling). Learning techniques that have been applied are e.g. simulated anneal-
ing [88], probabilistic approaches [154, 155], graphical models [137, 136], neural
networks and evolutionary algorithms [21, 91]. Alternatively, opponent modeling
papers exist for e.g. combinatorial auctions, in order to reduce the search space
for the auctioneer (e.g. [78]).



In a related but different way, preference elicitation is an important issue. In
this case, the modeling of some human (or agent) is done in a cooperative way, in
order to get the preferences into an appropriate model: a user preference model
for market games. This model can then be used in an agent when playing in
market games, on behalf of that person. So, in this case, the agent is instructed
which goals to reach, by means of the preference model. The learning process
differs in that it is supposed to be carried out with a cooperating, willing “op-
ponent”: the human being. Several papers with different objectives and learning
techniques exist in this area. Learning techniques include neural networks, evo-
lutionary algorithms, and heuristics to obtain fuzzy constraints [99, 20, 66]. This
area of research is close to the more general area of preference elicitation and
knowledge acquisition from humans [74], but has a different objectives in that it
concerns decision making during negotiations.

Market and Strategy Modeling In other settings, models of opponent pref-
erences are less relevant, and parameters concerning the goods about which the
market game is played, or the aggregate (anonymous) market behavior (deter-
mined by a substantial amount of fairly anonymous agents) is of more impor-
tance. In case of the underlying good, one may think of a good of which its
valuation can be determined from participation in multiple games. E.g., the
actual value for a seller of a customer click on a web advertisement can usu-
ally not be determined beforehand. This can be learning by approaches with
e.g. neural networks or evolutionary algorithms [21]. Also, the valuation of a
good can depend on the allocation of other goods to (other) agents [21, 165],
leading to allocative interdependencies. The level of adaptivity of the involved
agents can also influence the respective individual payoffs [165]. Similarly, ag-
gregate market behavior is of importance. This means so much as e.g: what is
the typical winning price for certain types of goods in certain types of markets
[193, 21], which can be done by various learning techniques. We also refer to
the trading agent competition (TAC) below. Some typical settings and results
exist e.g. for multiple games with an aggregated stochastic approach [1, 23], for
multiple goods in repeated auctions with bounded budgets [180], one-to-many
negotiations [57, 116], concurrent games with price prediction [120] or valuation
estimation [130], or using evolutionary or fuzzy neural techniques for one or
multiple goods in overlapping auctions [5, 71]. Also, more specific and tailored
models can be designed for market (price) prediction, e.g. for financial markets.
This, however, quickly reaches an other discipline, viz., regression and predic-
tion methods, especially if these markets are complex; this is outside the scope
of this paper. Finally, market behavior determined by bidding agents can also
be studied by simulations, in the form of evolutionary algorithms standing for
populations of agents strategies, from which also proper bidding strategies can
be obtained [58, 5, 31, 55].

In case of market games on complex goods, strategies could be decomposed in
some substrategies, that deal with different aspects of or paradigms in the game.
E.g., a negotiation strategy can be decomposed into the concession strategy (how



much to concede in the overall value of a bid) and the Pareto-search strategy
(search for Pareto-optimal deals) [152, 153, 45]. The concession strategy could
be seen as market and strategy modeling, the Pareto-search strategy could be
seen as opponent modeling.

Models of Application Settings Application settings and models that go
further than the conventional game theoretic stylizations are important for this
field. Market games are often studied related to more specific application models.
We briefly mention some settings and models, e.g.

— The trading agent competitions: TAC [167, 194, 191] and TAC SCM (supply
chain management) [167]. Both competitions deal with a modeled applica-
tion settings, viz., a) travel agencies that have to buy and sell holiday trips
consisting of complementary or substitutable constituents, and b) a 2-phase
supply chain for computer manufacturing and sales, respectively. Both deal
with several types of market mechanism for the distribution of goods and
services with complementarities and substitutables, and the agents have to
design strategies for both bidding in multiple games and determination of
what to buy. Approaches that have been presented until now, are e.g. price
prediction, equilibrium analysis, decision theory, and some forms of machine
learning (like Reinforcement Learning) (e.g. [35, 159, 70, 61] or [193] for a
survey).

— Market-based scheduling,resource allocation, and logistics [36, 190, 101, 134,
164].

— Inf(lrmation goods with negotiation and (dynamic) pricing [28, 86, 87, 156,
152, 57, 153, 63, 149].

Co-learning and Evaluation: State and Open Issues In addition to the de-
velopment of adaptive systems for agents in market games, other aspects become
important as well.

When applying adaptive techniques for competitive agents in multiagent sys-
tems, the quality of an adaptive strategy for an agent depends on the (adaptive)
strategies of other agents. In the case that all agents use truly adaptive strate-
gies as well, various forms of colearning occurs. Up to now, such environments of
multiple agents are still rather restricted and mainly address learning in coop-
erative systems and e.g. stochastic (general-sum) games [188, 147]. Approaches
and requirements address e.g. various settings with stationary opponent agents
and best response, evolutionary simulations [171, 58, 5, 31, 55, 3, 46, 64], self-
play (many results [37], also for co-evolution, e.g. [177]), or, for market settings,
leveled learning and opponent modeling [181, 77], adaptivity and individual prof-
its [165], and some mixed approaches (e.g. [184]). Thus, learning in a dynamic
environment containing colearning competitive agents has still received limited
attention, and still substantial questions exist about what feasible and relevant
environments are [148, 25, 188, 37, 158, 184, 143, 47]. Environments of more
or less arbitrary opponent agents are not possible in general (i.e., several im-
possibility results exist [113, 112]). Therefore, appropriate classes of competitive



opponent agents have to be given for which best learning strategies must be
determined [148] (the “AI agenda”), while other robust evaluation criteria for
resulting strategies must be determined and satisfied (e.g. [25, 37]). Still, appro-
priate further insight needs to be acquired for the effects of co-learning and for
the way in which adaptive strategies can be evaluated.

4.3 MARL

In this section we give an overview of the state of art in multi-agent RL (MARL).
This section is strongly inspired by the recent work of [148], [128], and [129].
These papers discuss current state of the art MARL algorithms and introduce
new evaluation criteria (i.e. the Al agenda) for judging MARL algorithms. We
also refer the interested reader to [84], [95], and [13] for alternative overview
papers. We discuss a number of notable MARL algorithms along with novel
evaluation criteria for competitive multi-agent RL learning. We have a bit of a
chicken and the egg scenario as novel criteria are under development and are
supported by novel learning algorithms that, of course, perform extremely well
for the newly introduced norms. We first discuss the novel criteria, and then
separately discuss the remaining algorithms. The next section begins with the
basic concepts of Multi-Agent RL and the often chosen problem domain of matrix
games.

Competitive Agents and Reinforcement Learning for Matrix games
In this section we introduce some concepts from Reinforcement Learning. We
repeat concepts from Game Theory in Section 3 and cast these to the the MARL
perspective for the sake of reference.

In general, let S denote the set of states in the game and let A; denote
the set of actions that agent/player ¢ may select in each state s € S. Let a =
(a1,as,...,a,), where a; € A; be a join action for n agents, and let A = A7 x
.-+ x A, be the set of possible joint actions. Zero-sum games are games where
the rewards of the agents for each joint action sum to zero. General sum games
allow for any sum of values for the reward of a joint action.

A strategy (or policy) for agent i is a probability distribution 7(-) over its
actions set A;. Let m(S) denote a strategy over all states s € S and let w(s) (or
m;) denote a strategy in a single state s. A strategy may be a pure strategy
(an agent selects an action deterministically) or according to a mixed strategy
(a strategy that plays a random action, according a probability distribution). A
joint strategy played by n agents is denoted by © = (m;,..., 7). Also, let a_;
and w_; refer to the joint action and strategy of all agents except agent .

We focus on the more restricted matrix game, defined by a set of matri-
ces R = {Ry,...,R,}. Matrix games are the chosen domain for most recent
MARL applications. We further restrict our presentation to two-player, two-
action games as these are well classified [132] and often used. The algorithms
presented in the rest of the paper are of course applicable to more general set-
tings.



Let R(w) = (R1(w), ..., R(my,)) be a vector of expected payoffs when the joint
strategy = is played. Also, let R;(m;, m—;) be the expected payoff to agent i when
it plays strategy m; and the other agents play m_;. A strategy then is dominant
if, regardless of what any other players do, the strategy earns a player a larger
payoff than any other strategy. Let R;( {aaé ) be the payoff for agent i playing

—1
action a; while the other agents play action a_;. A strategy m; is dominant, if
and only if
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Each individual matrix game has certain classic game theoretic values. The
minimax value for player i is m; = max,, min,_, R;(m;, a;), i.e. the least reward
that can be achieved if the game is known and the game is only played once. A
Best-Response (BR) to the opponents strategy m_; is defined by

BR = 7" = mazx.R;(m,7_;). (2)

This is the most expected reward that can be gained playing assuming the game
is known, the game is only played once, and the opponent strategy is known.

A Nash Equilibrium (Nash-Equilibrium) is then a joint strategy such that
no agent may unilaterally change its strategy without lowering its expected pay-
off in the one shot play of the game. Nash [115] showed that every n player
matrix game has at least one such Nash-Equilibrium. A Pareto optimal solu-
tion of the game is a joint strategy such that no agent may unilaterally increase
its expected payoff without making another agent worse off. A joint strategy m
is said to Pareto dominate a strategy ms if the expected payoff for m; is at
least as high as for 7o and higher for at least one of the agents. A joint strategy
is Pareto deficient if it is not Pareto optimal.

We assume that an agent can observe its own payoffs as well as the actions
taken by all agents in each stage game, but only after the fact. All agents con-
currently choose their actions. A possible adaption of the policy of the agents,
i.e. learning as a result of observed opponent behavior, only takes effect in the
next stage game. Each agent aims to maximize its reward for iterated play of
the same matrix game, playing the same opponent.

Evaluation Criteria

General Background Classic Reinforcement Learning [186, 163] aims to con-
verge to stationary policy 7 for an individual agent that maximizes the expected
discounted future payoffs. This amounts to

T

max B(3" 4™ R"(x) )
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where 7" may be finite or infinite and 0 < v < 1 is the discount factor. An al-
ternative measure is the average reward over the last ¢ epochs. Both approaches
however implicitly assume the agent is optimizing relative to a stationary envi-
ronment, an assumption that in general does not hold for MARL. All current
MARL algorithms therefore incorporate some modeling of the opponent in some
form or other to include the opponent as part of the (changing) environment
against which an agent is optimizing.

It should be noted that [113] prove that in general it is impossible to perfectly
learn to play optimally against an adaptive opponent and at the same time
perfectly estimate the policy of this opponent. Whether this theoretical result is
relevant for specific games must be kept in mind. To complicate matters, [179]
analyzes from an information theoretical perspective how much an agent can
hinder an opponent in modeling by displaying limited random behavior, purely
to hide its real preferences. Such strategic behavior is an example of how complex
interactions between agents can be and how difficult it can be to learn a good
policy when using an opponent model.

[34] introduces a first general classification of competence of MARL algo-
rithms. The ranking of algorithms is based on the crossproduct of their possible
strategies and their possible beliefs about the opponent’s strategy. An agent’s
possible strategy can be classified based upon the amount of history it has in
its memory. An agents beliefs mirrors the strategy classification. The different
categories are supposed to be leagues of players. A fair opponent is any opponent
from the same league or less. The idea is that a new learning algorithm should
ideally be able to beat any fair opponent. [11] add to this classification scheme
with new criterion of reactivity (see later in this section).

The focus to date in MARL algorithms has been mainly on game theoreti-
cal equilibriums from single shot games, i.e Nash-Equilibrium, Pareto-Optimal,
minimax, etc . ... Best-Response and Nash-Equilibrium are intertwined through
the circular argument that if both players play BR players will arrive at a mir-
rored minimax outcome, a Nash-Equilibrium. This is the heart of Fictitious
play; see [29], and [53].

A recent critique against the focus on such equilibriums has been launched
by [128]. This work lists some well-known problems. Nash-Equilibrium are for
example known not to be appropriate in repeated games, see also the Folk The-
orem. The work of [96] shows how to construct equilibriums for players that are
interested in average payoffs for repeated games in polynomial time. It is how-
ever unknown how the players should learn these during play as they discover the
structure of the game, and the play of their opponents. Also problematical is the
existence of multiple Nash-Equilibrium; how do the players choose to which they
should converge if the criteria is convergence to a, not the, Nash-Equilibrium.
Lastly, one-sided converge to a Nash-Equilibrium by one of the players may make
it miss out on exploitation opportunities if the opponents do not follow suit. Al-
gorithms aiming at a Nash-Equilibrium typically achieve this by updating their
policy towards the BR with respect to the current policies of their opponents.
Players will then, if all follow similar strategies, arrive at individual minimax



values of the game, which is a Nash-Equilibrium. Such properties have been
proved for converge to Nash-Equilibrium in self-play in zero sum games [92], but
have proved less tractable for general sum games. [128] provide suggestions for
different criteria for evaluating MARL algorithms. Their main focus is on the
Al Agenda.

The AT Agenda poses as evaluation criteria as to how well a given algorithm
can perform against a restricted class of opponents. The general properties of an
algorithm against any opponent, including game theoretical convergence prop-
erties, are deemed less important than the performance results when competing
with the opponents that the agent will actually encounter. Maximizing personal
reward is the criteria that we also feel should not be forgotten in the storm of
newly presented evaluation criteria that MARL algorithms are ranked by. In the
end, the only criteria of interest to a purely competitive agent for evaluating its
learning algorithm in a specific game is how closely it approaches the highest
aggregated reward possible during play for given opponents. Game theoretical
notions should however not be ignored as they give a sense of how general the
power of a MARL is. The Al agenda however allows for a lively competition pos-
sibility by introducing open competition on the extensive list of games generated,
for example, in the GAMUT framework [117].

Other Criteria In the rest of this section we list several miscellaneous evaluation
criteria that can play a role in ranking MARL algorithms.

The criterion of asymptotic stability was developed in [51]. This provides
local dynamic robustness. Two conditions must me met: i) Any solution that is
sufficiently close to the equilibrium remains arbitrarily close to it. This condition
is called Liapunov stability. ii) Any solution that starts close enough to the
equilibrium, converges to the equilibrium. These type of criteria recur in several
papers as full convergence is a strong concept, but algorithms can be shown to
come “close enough” to an equilibrium outcome and stay there.

An example of the above is that Hyper-Q [170]. This algorithm learns the
value of joint mixed strategies,instead of joint base actions. In the rock-paper-
scissors, the well-known children’s game, in self play does not converge to the
one third all equilibrium but cycles amongst a small number of grid points, with
roughly zero average reward for both players. Quoted: “Conceivably, Hyper-Q
could have converged to a cyclic Nash-Equilibrium, which would certainly be
a nice outcome of self-play learning in a repeated game.” This is an example
where the learning algorithm achieves the same average reward as the Nash-
Equilibrium, but in a dynamic setting. Note that both outcomes are as desirable
from the Al agenda perspective.

Another example is the Extended Replicator Dynamics algorithm of [174].
Here the authors take a dynamical systems approach in which they first design
the stable differential equations, reaching an asymptotic stable Nash equilib-
rium in all types of stateless matrix games. After this they constructed the
approximating learning algorithm showing the same behavior as the pre-defined
dynamical system, i.e. reaching a stable Nash equilibrium.



[37] introduces the AWESOME algorithm, short for “Adapt When Every-
body is Stationary. Otherwise Move to Equilibrium”. This algorithm converges
to BR against stationary opponents, and otherwise converges to a precomputed
Nash-Equilibrium in self play. These two properties are listed as minimal condi-
tions for MARL algorithms.

[24] use the No-regret-measure with their GIGA-WOLF algorithm. Regret
measures how much worse an algorithm performs compared to the best static
strategy, with the goal to guarantee at least zero average regret, i.e. no-regret,
in the limit. This is general compares the performance of a learner to the best
possible hand-coded opponent that performs the best possible strategy, assuming
this is computable, for a given game.

[11] define Reactivity that measures how fast a learner can adapt to an
unexpected hypothetical change in an opponents policy; how fast can an agent
learn a best response to an unexpected worst case switch in the opponent’s
policy. They show that it approximately predicts the performance of a learner
as a function of the parameters of its learning algorithm in the matching pennies
game. The criterion of reactivity is special to the MARL domain as it is a measure
of how quickly an agent can react to being exploited. This is a relative non-issue
in single agent RL and in Game Theory concerned with single stage games, but
becomes an important factor in repeated play.

[62] introduce the notion of Correlated Equilibrium. Players maintain
beliefs about their opponents. They are converged in a Correlated Equilibrium
if both believe, based on their beliefs about their opponents, no longer see it as
advantageous to adjust their policies.

Lastly, [126] presents and analysis a mathematical model of cuckoo para-
sitism. This work is of relevance to the MARL as it presents and in depth anal-
ysis of the cost of defense mechanisms. The main conclusion of the work is that
every defense mechanism has a non-zero cost, and expending time and energy
in defending against difficult and unlikely scenarios is not biologically smart.
Likewise, an agent in a complex situation with limited computational resources
may have to choose to focus on likely opponent strategic behavior, and not cover
all bases.

The next section discusses state of the art MARL algorithms not listed above.

Other seminal work Universal Consistency is a strong concept from game
theory. An algorithm with this property approximates the best-response sta-
tionary policy against any opponent. [52] and [50] independently show that a
multiplicative-weight algorithm exhibits universal consistency. These algorithms
however require the strong assumption that an agent know the opponent’s policy
at each time period, which is intractable in practice.

Nash-Q [76] for general-sum games, has as goal to converge to Nash-
Equilibrium. This is accomplished for a limited class of games. Friend or Foe
[93] treats other agents as either friend or foe and converges to Nash-Equilibrium
with less restrictions than Nash-Q,



The following two papers are well known gradient-ascent type algorithms.
The Policy Hill CLimber (PHC) is illustrated in [27]. PHC is a simple adaptive
strategy based on its own actions and rewards. It maintains a Q-table of of
values for each of its base actions, and at every time step it adjusts its mixed
strategy by a small step towards the greedy policy of its current Q-function.
In Infinitesimal Gradient Ascent (IGA) [151], an agent uses knowledge of the
current strategy pair to make to make a small change in the direction of the
gradient of its immediate payoff.

WOLF- Win or Learn Fast by [27, 24] deserves a special mention as it is one
of the few, if not the first, MARL algorithm to update its learning parameters
with as goal to exploit the opponent. The learning rate is made large if WOLF
is losing. Otherwise, the learning rate is kept small as a good strategy has been
found. Note that in [34] WOLF is exploited by a bluff and dash hand-tailored
algorithm to exploit the small step increment of the latter algorithm.

The leader strategies: Bully and Godfather are introduced in [94]. These two
strategies aim to threaten the opponent to play good equilibrium strategies, at
least from the viewpoint of the threatening agent. This work shows that many
known algorithms, like the gradient descent type, are vulnerable to exploitation
by these type of hand-tailored strategies.

Predictive state representations [196] is a recent and growing new line of re-
search. The optimization problem of an individual agent is handled by predicting
future states from past observations. This is a step beyond the optimization of
a policy by incorporating a link between past and future observations in the
decisions on how to update the current policy.

Lastly, we list [188] with the NSCP-learners (Non-Stationary Converging
Policies) for n-player general sum stochastic games. This work, as claimed, has
a first proof of Convergence in self-play on general sum games. This is achieved
by slowly decreasing the area of the state space in which the adaptive policies
can “move”. This locks in the agents to stationary, possibly mixed, strategies
that are, by definition, converged.

More and more complex nested opponent models [77] will probably be the
future norm in the MARL agents arms race. Although learning about an oppo-
nent while at the same time learning is problematic [113], there is still a need to
be “smarter” than your opponents.

5 Contributions of this book

The previous two sections gave a comprehensive overview of the state-of-the-
art research on MASs. This section discusses new contributions of the LAMAS
workshop. This event included two prestigious invited talks, which have resulted
in two extensive high quality papers included in this book.

The invited talk of Peter Stone, University of Texas at Austin, USA, has been
shaped into the paper: Multi-Robot Learning for Continuous Area Sweeping,
by Mazda Ahmadi and Peter Stone. In their paper they study the problem of
multi-agent continuous area sweeping. In this problem agents are situated in a



particular environment in which they have to repeatedly visit every part of it
such that they can detect events of interest for their global task and coordinate
to minimize the total cost. Events are not uniformly distributed, such that agents
need to visit locations non-uniformly. The authors formalize this problem and
present an initial algorithm to solve it. Moreover they nicely illustrate their
approach with a set of experiments in a routine surveillance task.

The second invited talk of the workshop was by Ann Nowé, professor in
computer sciences at the university of Brussels, Belgium, resulting in the paper:
Learning Automata as a Basis for Multiagent Reinforcement Learning, by Ann
Nowé, Katja Verbeeck and Maarten Peeters. In their work they start with an
overview on important theoretical results from the theory of Learning Automata
in terms of game theoretic concepts and consider them as a policy iterator in
the domain of Reinforcement Learning problems. Doing so they gradually move
from the variable structure automaton, mapping to the single stage-single agent
case, over learning automata games, mapping to the single stage multi-agent
case, to interconnected Learning Automata, considering multi stage-multi agent
problems. The authors also show the most interesting connection with the field
of Ant Colony Optimization.

The entire program of LAMAS covered a quite wide area in learning and
adaption in multi-agent systems, varying from typical application areas as traf-
fic management, rover systems, ant systems and economical systems to more
theoretical papers on state space representation, no-regret learning, evolution,
exploration-exploitation and noise in cooperative systems.

Starting with the application papers, we have [182, 38, 14, 172]. In [182], the
authors introduce a new kind of ant colony optimization algorithm, extending
the classical algorithms with multiple types of ants. They use this kind of multi-
agent approach for solving the problem of routing and backup trees in optical
networks. More precisely, they assign an ant type to each working path and and
backup tree.

In [38], the authors identify and explore several interesting opportunities,
created by their reservation based mechanism for traffic management, for multi-
agent learning. More precisely, their system consists of two kinds of agents, i.e.
intersection managers and driver agents, for which they describe the learning
opportunities and offer a first-cut solution to each of them. These opportunities,
amongst others, include delayed response for the intersection manager, organiz-
ing an intersection as a market, agents bidding in this market and autonomous
lane changing.

The topic of the paper [14] is coordination in large multi-agent systems,
studying effects of guiding the decision process of individual agents. In their work
they study this problem in the context of route guidance in traffic management.
The guiding information can have different sources and agents are potential
players. Simulations of this problem show that it can be beneficial to have a
recommendation system for drivers. The authors discuss the different conditions
for an optimal performing recommendation system.



Adaptive Multi-Rover Systems are the topic of paper [172]. More precisely,
the authors describe how efficient reward methods can be applied to the coordi-
nation of multiple agents in a dynamic environment with limited communication
possibilities. Difficulties lie in the design of the individual reward functions which
need to be aligned with the global reward function and must stay aligned with
changes in the reward of each individual agent. Their results show how fac-
tored reward functions, in combination with evolutionary computation, can be
successful for real world applications.

One of the fundamental problems in RL is the exploration-exploitation
dilemma, which is extensively studied in [135]. The authors propose a new algo-
rithm based on meta-heuristics to tune the tradeoff between both and validate
it on economic systems. Moreover it is shown to be a promising approach in
comparison with other adaptive techniques.

Having a glance at the less application oriented and more theoretical papers,
we find five contributions in this book [12, 2, 173, 42, 107].

In [12] the authors present a new multi-agent learning algorithm, which is a
modification of the ReDVal.eR algorithm. The new algorithm achieves conver-
gence to near-best response against eventually stationary opponents, no-regret
payoff against arbitrary opponents and convergence to the Nash equilibrium in
unique mixed equilibria games.

In [2] the authors extend their previous algorithm, which finds Pareto optimal
solutions in general sum games, to so-called preferred Pareto Optimal solutions
(PPO). A clear definition can be found in their paper. Moreover, they experiment
with the opportunity of revelation in two-player two-action conflict games. Their
experiments show that their new algorithm is an improvement over previous
results.

In [173] the authors give a new direction to research in multi-agent learning by
cross-fertilizing the multi-agent learning problem with relational reinforcement
learning (RRL). More precisely, they propose to use a relational representation
of the state space in multi-agent reinforcement learning as this has many proved
benefits over the propositional one, as for instance handling large state spaces,
a rich relational language, modeling of other agents without a computational
explosion, and generalization over new derived knowledge. Their initial exper-
iments show that the learning rates are quite good and promising when using
a relational representation in coordination problems and that they can be in-
creased by using the observations over other agents to learn a relational structure
between the agents.

The authors of [42] present their methods for dealing with a noisy envi-
ronment in cooperative multi-agent learning. More precisely, they introduce an
algorithm to cope with perception, communication and position errors for coop-
erative multi-agent learning tasks. Although this offers interesting possibilities,
the improvements are quite expensive seen from a computational perspective.

Tag-mediated interaction has shown to stimulate cooperation in populations
of agent playing the Prisoner’s Dilemma (PD) game. In [107], the authors try
to answer why tags facilitate such cooperation. More precisely, they analyzed



the effects of the size of the tag space, mutation rate in the population, on
cooperation in a population of agents playing the PD game. Additionally, they
empirically analyzed why tags have this influence on this type of systems. The
conclusion suggests that tags rather promote mimicry than cooperation.

6 Open Research Issues

Multi-agent learning is a relatively young field and as such its open research
issues are still very much in flux. This section singles-out three important open
questions that need to be addressed in order to make multi-agent learning more
broadly successful as a technique in real world applications. These issues arise
from the multi in multi-agent learning, and may eventually require new learning
methods specifically tailored for multiple agents.

Scalability Scalability is a problem for many learning techniques, but especially
so for multi-agent learning. The dimensionality of the search space grows rapidly
with the number of agents, the complexity of their behaviors, and the size of the
network of interactions among them. This search space grows so rapidly that one
cannot learn the entire joint behavior of a large, heterogeneous, strongly inter-
communicating multi-agent system. Effective learning in an area this complex
requires some degree of sacrifice: either by isolating the learned behaviors among
individual agents, by reducing the heterogeneity of the agents, or by reducing
the complexity of the agent’s capabilities. Techniques such as learning hybrid
teams, decomposition, or partially restricting the locality of reinforcement pro-
vide promising solutions in this direction.

As problem complexity increases, it gives rise to the spectre of emergent
behavior, where the global effects of simple agent behaviors cannot be readily
predicted. This is an area of considerable study and excitement in artificial life:
but it may also be a major problem for machine learning. How does emergence
affect the smoothness of the search space? If small perturbations in agent be-
havior result in radical swings in emergent behavior, can learning methods be
expected to scale well at all in this environment?

Adaptive Dynamics and Nash Equilibria Multi-agent systems are typically dy-
namic environments, with multiple learning agents vying for resources and tasks.
This dynamism presents a unique challenge not normally found in single-agent
learning: as the agents learn, their adaptation to one another changes the world
scenario. How do agents learn in an environment where the goalposts are con-
stantly and adaptively being moved? In many cases, existing learning methods
may converge to suboptimal Nash equilibria. We echo opinions from [90] and
express our concern with the use of Nash equilibria in cooperative multi-agent
learning: such “rational” convergence to equilibria may well be movement away
from globally team-optimal solutions [90]. We argue that, in the context of co-
operative agents, the requirement of rationality should be secondary to that
of optimal team behavior. Mutual trust may be a more useful concept in this
context.



Large State Spaces The state space of a large, joint multi-agent task can be
overwhelming. An obvious way to tackle this is to use domain knowledge to
simplify the state space, often by providing a smaller set of more “powerful”
actions customized for the problem domain. For example, agents may use higher-
level descriptions of states and actions [104]. Another alternative has been to
reduce complexity by heuristically decomposing the problem, and hence the joint
behavior, into separate, simpler behaviors for the agents to learn. One approach
to such decomposition is to learn basic behaviors first, then set them in stone
and learn more complex behaviors based on them. This method is commonly
known as layered learning, and was successfully applied to robotic soccer [157].
Another approach, shaping, gradually changes the reward function from favoring
easier behaviors to favoring more complex ones based on those easy behaviors
[103, 10].

Less work has been done on formal methods of decomposing tasks (and be-
haviors) into subtasks (sub-behaviors) appropriate for multi-agent solutions, how
agents’ sub-behaviors interact, and how and when learning of these sub-behaviors
may be parallelized. Guestrin et al note that in many domains the actions of
some agents may be independent [65]. Taking advantage of this, they suggest
partially decomposing the joint team behavior based on a coordination graph that
heuristically spells out which agents must interact in order to solve the prob-
lem. Ghavamzadeh and Mahadevan suggest a different hierarchical approach
to simplifying the inter-agent coordination task, where agents coordinate their
high-level behaviors, rather than each primitive action they may perform [59].

An alternative to problem decomposition, is the quest for other representa-
tions or formalisms for the state space. One such succesfull method in single-
agent learning has been the cross fertilization between reinforcement learning
and inductive logic programming [41, 39, 168]. More precisely, in this formal-
ism states are represented in a relational form, that more directly represents
the underlying world. Complex tasks as planning or information retrieval on the
web can be represented more naturally in relational form than in propositional
form, what is usually done in Reinforcement Learning. In [173], the authors are
extending this single agent work to multi-agent planning and coordination tasks.

Competitive Agents Non-cooperative agents [189] for economical and societal
settings, or competitive agents for short, are receiving increasing interest in re-
cent years. Such agents have their own, possibly conflicting goals and aim for
local optimization. Their owners can e.g. be competing companies or autonomous
departments within a bigger organization, where the multi-agent systems should
facilitate trading, allocation, or planning between these owners, e.g. by means
of negotiation or auctioning.

Due to the advances in the use of Internet technology, providing technology
for autonomous or competitive parties has become crucial, both for computer
science and for its applications [123, 82]. For competitive agents in a multi-agent
system, the continuing question is how such a system can work properly. Here,
inspired by economics, competitive games appear to be important.



More and more complex nested opponent models [77] will likely be the future
norm in the for agents in the competitive arms race. Although learning about an
opponent while at the same time learning is problematic [113], there is still a need
to be “smarter” than your opponents. The Al Agenda will play an important
role.

A Introductory Notions from (Evolutionary) Game
Theory

In this section, as an Appendix, we introduce elementary concepts from Game
Theory (GT) and Evolutionary Game Theory (EGT) necessary to understand
Sections 3 and 4 of this paper. Game Theory is an economical theory that models
interactions between agents as games of two or more players. More precisely, the
agents participating in such a game can choose from a set of strategies to play,
according to their own preferences. Game Theory is the mathematical study of
interactive decision making in the sense that the agents involved in the decisions
take into account their own choices and those of others. Choices are determined
by stable preferences concerning the outcomes of their possible decisions, and by
the relation between their own choices and those of others.

After the stagnation of GT for many years, John Maynard Smith applied
Game Theory to Biology, which made him relax the strong premises behind
GT. Under these biological circumstances, it becomes impossible to judge what
choices are the most rational ones. The question now becomes how a player can
learn to optimize its behavior and maximize its return. This learning process is
analogous to the concept of evolution in Biology. These new ideas have led to the
development of the concept of Evolutionary Stable Strategies (ESS), a special
case of the Nash condition. In contrast to GT, EGT is descriptive and starts
from more realistic views of the game and its players. Here the game is no longer
played exactly once by rational players who know all the details of the game.
Details of the game include each others preferences over outcomes. Instead EGT
assumes that the game is played repeatedly by players randomly drawn from
large populations, uninformed of the preferences of the opponent players.

We provide definitions of strategic games, as well zero sum as general sum,
and introduce concepts as Nash equilibrium, Pareto optimality, Pareto Domi-
nance, Evolutionary Stable Strategies and Population Dynamics. For the con-
nection between these concepts we refer the interested reader to [175, 133, 187].

A.1 Strategic games

In this section we define n-player normal form games as a conflict situation
involving gains and losses between n players. In such a game n players repeat-
edly interact with each other by all choosing an action (or strategy) to play.
All players choose their strategy at the same time. For reasons of simplicity, we
limit the pure strategy set of the players to 2 strategies. A strategy is defined
as a probability distribution over all possible actions. In the 2-pure strategies



case, we have: s;1 = (1,0) and s = (0,1). A mixed strategy s,, is then defined
by $m = (21, x2) with x1, 22 # 0 and z1 + 22 = 1.

Defining a game more formally we restrict ourselves to the 2-player 2-action
game. Nevertheless, an extension to n-players n-actions games is straightforward,
but examples in the n-player case do not show the same illustrative strength as in
the 2-player case. A game G = (51, Sa, P1, P») is defined by the payoff functions
Py, P> and their strategy sets S; for the first player and So for the second player.
In the 2-player 2-strategies case, the payoff functions P; : S; x S — R and
Py : 51 x So — R are defined by the payoff matrices, A for the first player and B
for the second player, see Table 8. The payoff tables A, B define the instantaneous
rewards. Element a;; is the reward the row-player (player 1) receives for choosing
pure strategy s; from set S; when the column-player (player 2) chooses the pure
strategy s; from set S,. Element b;; is the reward for the column-player for
choosing the pure strategy s; from set S when the row-player chooses pure
strategy s; from set Sj.

If now a;; + b;; = 0 for all < and j, we call the game a zero sum game. This
means that the sum of what is won by one agent (positive) and lost by another
(negative) equals zero. This corresponds to a situation of pure competition. In
case that a;; + b;; # 0 for all 4 and j we call the game a general sum game. In
this situation it might be very beneficial for the different agents to cooperate
with one another.

The family of 2 x 2 games is usually classified in three subclasses, as follows
[133],

A (1@ b1 bi2
as1 a2 ba1 b22
Table 8. The left matrix (A) defines the payoff for the row player, the right matrix
(B) defines the payoff for the column player

Subclass 1: if (a11 — a21)(a12 — az2) > 0 or (b11 — b12)(b21 — baz) > 0, at least
one of the 2 players has a dominant strategy, therefore there is just 1 strict
equilibrium.

Subclass 2: if (a11 — agl)(alg — agg) < O,(bll — blg)(bgl — bgg) <0, and (a11 —
as1)(b11 — bi2) > 0, there are 2 pure equilibria and 1 mixed equilibrium.
Subclass 3: if (a11 — agl)(alg — agg) < O,(bll — blg)(bgl — bgg) <0, and (a11 —

as1)(b11 — bi2) < 0, there is just 1 mixed equilibrium.

The first subclass includes those type of games where each player has a dom-
inant strategy®, as for instance the prisoner’s dilemma. However it includes a

8 A strategy is dominant if it is always better than any other strategy, regardless of
what the opponent may do.



larger collection of games since only one of the players needs to have a dominant
strategy. In the second subclass none of the players has a dominated strat-
egy (e.g. battle of the sexes). But both players receive the highest payoff by
both playing their first or second strategy. This is expressed in the condition
(a11 — a21)(b11 — b12) > 0. The third subclass only differs from the second in the
fact that the players do not receive their highest payoff by both playing the first
or the second strategy (e.g. matching pennies game). This is expressed by the
condition (a1 — a21)(b11 — b12) < 0.

A.2 Nash equilibrium

In traditional game theory it is assumed that the players are rational, meaning
that every player will choose the action that is best for him, given his beliefs
about the other players’ actions. A basic definition of a Nash equilibrium is
stated as follows. If there is a set of strategies for a game with the property
that no player can increase its payoff by changing his strategy while the other
players keep their strategies unchanged, then that set of strategies and the
corresponding payoffs constitute a Nash equilibrium.

Formally, a Nash equilibrium is defined as follows. When 2 players play the
strategy profile s = (s;, s;) belonging to the product set S7 x Sz then s is a Nash
equilibrium if Py (s;, s;) > Pi(sz,s5) Vo € {1,...,n} and Ps(s;,s;) > Pa(ss, 8z)
Vo e {1,...,m} %

A.3 Minimax and Maximin

In the context of zero-sum games two specific value are of particular interest,
i.e. minimaz and mazimin. More precisely, recall from Section A.1 that in case
of zero-sum games we have, a;; + b;; = 0 or a;; = —b;;. Player one will try to
maximize this value and player two will try to minimize it. Intuitively, mazimin is
the maximum payoff that player one will receive if player two responds optimally
to every strategy of player one by minimizing one’s payoff. Formally, we have

P L Pls s, 4
mazimin = max 3?161512 (si,55) (4)
in s;As; 5

Note that s; and s; need to be interpreted as probability distributions with
s; = (x1,22) where z1, 22 > 0 and z1 + 22 = 1.
Analogously, minimaz is defined as follows for the second player,

minimar = min max siAsz (6)
$;E€82 s;€51

% For a definition in terms of best reply or best response functions we refer the reader
to [187]



Von Neumann proved that for any zero sum game there exists a v € R such
that minimaxr = mazimin = v. This means that for any 2-player finite zero
sum game mazimin and minimazr always coincide. Moreover, for every Nash
equilibrium (s7, s7)) holds: s As? = v. The interested reader can find the proofs
in [133).

A.4 Pareto optimality

The concept of Pareto optimality is named after the Italian economist Vilfredo
Pareto(1848-1923). Intuitively a Pareto optimal solution of a game can be defined
as follows: a combination of actions of agents in a game is Pareto optimal if there
is no other solution for which all players do at least as well and at least one agent
is strictly better off.

More formally we have: a strategy combination s = (s1, ..., s,) for n agents
in a game is Pareto optimal if there does not exist another strategy combination
s’ for which each player receives at least the same payoff P; and at least one
player j receives a strictly higher payoff than P;.

Another related concept is that of Pareto Dominance: An outcome of a game
is Pareto dominated if some other outcome would make at least one player
better off without hurting any other player. That is, some other outcome is
weakly preferred by all players and strictly preferred by at least one player. If
an outcome is not Pareto dominated by any other, than it is Pareto optimal.

A.5 Evolutionary Stable Strategies

The core equilibrium concept of Evolutionary Game Theory is that of an Evolu-
tionary Stable Strategy (ESS). The idea of an evolutionarily stable strategy was
introduced by John Maynard Smith and Price in 1973 [106]. Imagine a popula-
tion of agents playing the same strategy. Assume that this population is invaded
by a different strategy, which is initially played by a small number of the total
population. If the reproductive success of the new strategy is smaller than the
original one, it will not overrule the original strategy and will eventually disap-
pear. In this case we say that the strategy is evolutionary stable against this new
appearing strategy. More generally, we say a strategy is an Evolutionary Stable
strategy if it is robust against evolutionary pressure from any appearing mutant
strategy.

Formally an ESS is defined as follows. Suppose that a large population of
agents is programmed to play the (mixed) strategy s, and suppose that this
population is invaded by a small number of agents playing strategy s. The
population share of agents playing this mutant strategy is € € ]0,1[. When an
individual is playing the game against a random chosen agent, chances that he
is playing against a mutant are € and against a non-mutant are 1 — e. The payoff
for the first player, being a non mutant is:

P(s,(1—¢)s+es)



and being a mutant is, ) )

P(s,(1—€)s+es)
Now we can state that a strategy s is an ESS if V s # s there exists some
0 €]0,1[ such that Ve: 0 <e <4,

P(s,(1—€¢)s+es)>P(s,(1—e)s+es)

holds. The condition ¥V € : 0 < € < § expresses that the share of mutants needs
to be sufficiently small.

A.6 Population Dynamics

In this section we discuss the Replicator Dynamics in a single population setting.
For a discussion on the multi-population setting we refer the reader to [60, 133,
187].

The basic concepts and techniques developed in EGT were initially formu-
lated in the context of evolutionary biology [105, 187, 141]. In this context,
the strategies of all the players are genetically encoded (called genotype). Each
genotype refers to a particular behavior which is used to calculate the payoff of
the player. The payoff of each player’s genotype is determined by the frequency
of other player types in the environment.

One way in which EGT proceeds is by constructing a dynamic process in
which the proportions of various strategies in a population evolve. Examining
the expected value of this process gives an approximation which is called the RD.
An abstraction of an evolutionary process usually combines two basic elements:
selection and mutation. Selection favors some varieties over others, while mu-
tation provides variety in the population. The replicator dynamics highlight the
role of selection, it describes how systems consisting of different strategies change
over time. They are formalized as a system of differential equations. Each repli-
cator (or genotype) represents one (pure) strategy s;. This strategy is inherited
by all the offspring of the replicator. The general form of a replicator dynamic
is the following:

dﬂ?i

dt

In equation (7), x; represents the density of strategy s; in the population, A

is the payoff matrix which describes the different payoff values each individual
replicator receives when interacting with other replicators in the population.
The state of the population (x) can be described as a probability vector
x = (x1,Z2,...,2s) which expresses the different densities of all the different
types of replicators in the population. Hence (Ax); is the payoff which replicator
s; receives in a population with state =z and x - Ax describes the average

= [(4x); — x - Ax]; (7)

payoff in the population. The growth rate L of the population share using
strategy s; equals the difference between the strategy s current payoff and the av-
erage payoff in the population. For further details we refer the reader to [187, 73].
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