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Abstract

This paper discusses the role of culture in the evolution of
cognitive systems. We define “culture” as any information
transmitted between individuals and between generations by
non-genetic means. Experiments are presented that use ge-
netic programming systems that include special mechanisms
for cultural transmission of information. These systems
evolve computer programs that perform cognitive tasks in-
cluding mathematical function mapping and action selection
in a virtual world. The data show that the presenceof culture-
supporting mechanisms can have a clear beneficial impact on
the evolvability of correct programs. The implications that
these results may have for cognitive science are briefly dis-
cussed.

Introduction
Interactions between cultural and evolutionary processes are
discussed in the literatures of several fields, including cog-
nitive science (Donald, 1991), ethology (Bonner, 1980), so-
ciobiology (Lumsden and Wilson, 1981), and primatology
(Quiatt and Itani, 1994). This paper reports related work
in the field of evolutionary computation, in which prob-
lems are solved by use of computational mechanisms that
have been derived from evolutionary processes. In particu-
lar, results are presented for genetic programming systems,
in which executable computer programs are automatically
produced through processes of recombination and natural
selection (Koza, 1992). Genetic programming systems can
automatically produce computer programs for a variety of
interesting cognitive tasks including circuit design, gram-
mar induction, block stacking, and action selection (Koza,
1992; Spector, 1994, 1996).

The representations and algorithms employed by artifi-
cially evolved cognitive systems may bear little resemblance
to those of natural cognitive systems. They nonetheless ex-
emplify possible cognitive mechanisms, and as such they
may be of interest to cognitive science more broadly. For
purposes of cognitive modeling one can also constrain the
evolutionary process in various ways. For example, one can
restrict the set of functions and data structures out of which
programs are constructed to a set that has been deemed

0To appear in the 1996 Cognitive Science (CogSci96) confer-
ence proceedings, UC San Diego.

cognitively plausible. The overall architecture of evolved
programs can be similarly constrained.

One can measure the computational effort required to
evolve systems under different conditions (e.g., when the
systems are architecturally constrained in various ways).
By use of such measurements one can assess the evolvabil-
ity of cognitive systems of various sorts given the specified
conditions. Because all natural cognitive systems presum-
ably arose through evolutionary processes, this information
may be used as evidence for or against hypotheses about
cognitive mechanisms in natural systems.

This study examines the effect that culture has on the
evolvability of cognitive systems. We define “culture” as
any information transmitted between individuals and be-
tween generations by non-genetic means.1 Related notions
of culture have been explored in other evolutionary compu-
tation paradigms (Bankes, 1995; Reynolds, 1994; Hutchins
and Hazlehurst, 1993). In this paper experiments are pre-
sented in which genetic programming systems evolve pro-
grams that perform cognitive tasks (mathematical function
mapping and action selection). Special mechanisms are
added to support cultural transmission of information, and
the resulting impacts on evolvability are observed. The
data show that the presence of culture-supporting mecha-
nisms can have a clear beneficial impact on the evolvability
of correct programs.

From an engineering perspective, the results show that the
efficiency of genetic programming can be improved through
the addition of culture-supporting mechanisms; since the
mechanisms are also simple and easy to add, practitioners of
evolutionary computation should consider their use for other
problems. From a cognitive science perspective, the results
may shed some light on the relations between evolution and
culture more broadly, and they may also suggest new uses
of evolutionary computation in cognitive modeling.

The next section describes the experimental method used
in this study, with subsections on genetic programming,
the measurement of computational effort, indexed memory
(the mechanism on which the implementation of culture is
based), culture, and two test problems: symbolic regression
of y = x4

+ x3
+ x2

+ x and action selection in Wumpus
world. Results are then presented in the form of computa-

1Bonner (1980) provides a similar definition.



tional effort measurements, and the meaning and generality
of the results are discussed.

Method
Genetic Programming
Genetic programming is a technique for the automatic gen-
eration of computer programs by means of natural selec-
tion (Koza, 1992). The genetic programming process starts
by creating a large initial population of programs that are
random combinations of elements from problem-specific
function and terminal sets. Each program in the initial pop-
ulation is then assessed for fitness, and the fitness values are
used in producing the next generation of programs by means
of a variety of genetic operations including reproduction,
crossover, and mutation. After a preestablished number of
generations, or after the fitness improves to some preestab-
lished level, the best-of-run individual is designated as the
result and is produced as the output from the genetic pro-
gramming system. Details of program representation and
algorithms for all genetic operators, along with full source
code for genetic programming systems, can be found in
(Koza, 1992) and (Koza, 1994).

Computational Effort
Koza has developed a technique for measuring the com-
putational effort required to solve a problem with genetic
programming (Koza, 1994). Because the genetic program-
ming algorithm includes random choices at several steps,
data is collected from a large number of independent runs.
One first calculates P(M,i), the cumulative probability of
success by generation i using a population of size M. For
each generation i this is simply the total number of runs that
succeeded on or before the ith generation, divided by the to-
tal number of runs conducted. One then calculates I(M,i,z),
the number of individuals that must be processed to pro-
duce a solution by generation i with probability greater than
z (where z is usually 99%). I(M,i,z) is calculated using the
formula:

I(M; i; z) =M � (i + 1) �

�
log(1 � z)

log(1 � P (M; i))

�

The minimum of I(M,i,z) over the range of i is defined
as the “computational effort” required to solve the problem
with the given system (Koza, 1994).

Indexed Memory
Indexed memory is a mechanism that allows programs de-
veloped by genetic programming to make use of runtime
memory (Teller, 1994). The mechanism consists of a linear
array of memory locations and two functions, READ and
WRITE, that are added to the set of functions from which
programs are created. The memory is initialized at the start
of each program execution. READ takes a single argument
and returns the contents of the memory location indexed by
that argument. WRITE takes two arguments, a memory in-
dex and a data item, and stores the data item in the memory
at the specified index. WRITE returns the previous value

of the specified memory location. Teller (1994) showed
that indexed memory can help to evolve correct programs
for certain problems, and that the combination of indexed
memory and iteration allows genetic programming to pro-
duce any Turing-computable function. Others have further
examined the utility of indexed memory; for example, An-
dre (1995) has experimented with problems that require the
use of memory, and has explored the ways in which evolved
programs use indexed memory in solving these problems.

Culture
“Culture” can be implemented by modifying Teller’s in-
dexed memory mechanism to cause all individuals to share
the same memory. The memory should be initialized only at
the start of a genetic programming run. Subsequent changes
to the memory by any individual will persist and be avail-
able to other individuals. This makes it possible for a pro-
gram to pass information to itself (in later executions in the
run), to its contemporaries, to its offspring, and to unrelated
members of future generations. The order in which the pop-
ulation is evaluated for fitness can clearly have an effect; the
evaluation order within each generation can be randomized
to prevent systematic exploitation of this effect.

A culture is the collective product of all individuals
throughout evolutionary time. This means that any “good
idea” developed by any individual may be preserved for use
by all other individuals. Unfortunately, it also means that a
single destructive individual can erase a great deal of valu-
able information. For most of the problems studied so far,
the positives outweigh the negatives—the availability of a
culture speeds evolution.

A program evolved with culture will generally function
correctly only when run in an appropriate cultural context.
The cultural context within which a program was evolved
is therefore an intrinsic part of the program, and the genetic
programming system should report the appropriate cultural
context (initial cultural memory state) along with the best-
of-run program.

Test Problems
Symbolic Regression The goal of the symbolic regres-
sion problem, as described by Koza (1992), is to produce a
function, in symbolic form, that fits a provided set of data
points. For each element of a set of (x, y) points, the function
should map the x value onto the appropriate y value. This
is the sort of problem faced by a scientist who has obtained
a set of experimental data points and suspects that a simple
formula will suffice to explain the data. The scientist may
further suspect that such a formula can be constructed from
a particular set of arithmetic and trigonometric operators. In
searching for the correct formula the scientist is attempting
to solve a symbolic regression problem. Once the correct
formula is found the scientist may use it to map new x values
onto their y values.

For the described experiments data points were obtained
from the equation y = x4

+x3
+x2

+x (see Figure 1), which
is a standard example from the literature (Koza, 1992). One
can view the task of the genetic programming system as
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Figure 1: The target function for the symbolic regression
problem: y = x4

+ x3
+ x2

+ x.

that of “rediscovering” or inducing this formula from the
data points used as fitness cases. 20 fitness cases were
used for the data presented here, with randomly selected x
values between -1 and 1. A program was considered to be
successful if it returned a value within 0.01 of the target y
value for all 20 cases.

The functions that could be used in evolved programs
were the 2-argument addition function +, the 2-argument
subtraction function -, the 2-argument multiplication func-
tion *, the 2-argument protected division function %, two
1-argument trigonometric functions SIN and COS, the 1-
argument exponential function EXP, and the 1-argument
protected logarithm function RLOG (as in (Koza, 1992)).
Programs could also refer to the independent variable X,
and to “ephemeral random constants” between -1 and 1
(also as in (Koza, 1992)). Tournament selection was used
(tournament size = 5), along with a 90% crossover rate, a
10% reproduction rate, no mutation, a population size of
1000, and a maximum of 51 generations per run. Detailed
descriptions of the meanings of these parameters can be
found in (Koza, 1992); it suffices here to note that these
values are reasonably standard.

For the runs with indexed-memory and for those with
culture a 100-element memory array was added, along with
READ and WRITE functions that behave as described above.
The “index” arguments of these functions were coerced to
the proper range ([0–99]) by multiplying them by 100 and
by then taking them modulo 100.

Wumpus World Wumpus world (Russell and Norvig,
1995) is a problem environment within which an agent
must select actions to navigate within a dangerous world
to achieve goals. The use of genetic programming for the
evolution of Wumpus world agents has been described else-
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Figure 2: An instance of a 6-by-6 Wumpus world.

where (Spector, 1996). This section describes the problem
informally; see (Spector, 1996) for a detailed description
of the Wumpus world simulator, the function set, and other
parameters.

Wumpus world is cave represented as a grid of squares
surrounded by walls. A 6-by-6 grid was used for the ex-
periments described here.2 The agent’s task is to start in
a particular square, to move through the world to find and
to pick up the piece of gold, to return to the start square,
and to climb out of the cave. The cave is also inhabited
by a “wumpus” — a beast that will eat anyone who en-
ters its square. The wumpus produces a stench that can
be perceived by the agent from adjacent (but not diagonal)
squares. The agent has a single arrow that can be used to kill
the wumpus. When hit by the arrow the wumpus screams;
this can be heard anywhere in the cave. The wumpus still
produces a stench when dead, but it is harmless. The cave
also contains bottomless pits that will trap unwary agents.
Pits produce breezes that can be felt in adjacent (but not di-
agonal) squares. The agent perceives a bump when it walks
into a wall, and a glitter when it is in the same square as
the gold. Figure 2 shows an instance of a 6-by-6 Wumpus
world.

The wumpus world agent can perform only the following
actions in the world: go forward one square; turn left 90�;
turn right 90�; grab an object (e.g., the gold) if it is in the
same square as the agent; release a grabbed object; shoot
the arrow in the direction in which the agent is facing; climb
out of the cave if the agent is in the start square.

2Although the experiments described in (Spector, 1996) also
used a 6-by-6 grid, the world’s “walls” occupied space in the
simulator used for those experiments. The actual playing area for
those experiments was therefore 4x4, and the results are therefore
not directly comparable to those described here.



The agent’s program is invoked to select a single action
for each time-step of the simulation. The program returns
one of the valid actions and the simulator then causes that
action, and any secondary effects, to happen in the world.
The agent can maintain information between actions by use
of a persistent memory system. The agent’s program has a
single parameter, a “percept” that encodes all of the sensory
information available to the agent. The agent’s program
can refer to the components of the percept arbitrarily many
times during its execution.

Agents are assessed on the basis of performance in four
randomly generated worlds (new worlds are generated for
each assessment). In each world the agent is allowed to
perform a maximum of 50 actions, and the agent’s score
is determined as follows: 100 points are awarded for ob-
taining the gold, there is a 1-point penalty for each action
taken, and there is a 100-point penalty for each unit of dis-
tance between the agent and the gold at the end of the run.3

“Standardized fitness” values (for which lower values are
better (Koza, 1992)) are the average of the scores from the
four random worlds, subtracted from 100. Agents are not
explicitly rewarded for climbing out of the cave, although
less action penalties are accumulated if an agent climbs out
and thereby ends the simulation. An agent is considered to
have solved the problem if its average score in four random
worlds is greater than zero. To have obtained such a score
an agent must have grabbed the gold in at least one and
usually two or more of the four random worlds. This is
difficult; in many cases it is necessary to risk death in order
to navigate to the gold, and in some cases the gold may be
unobtainable because it is in a pit or in a square surrounded
by pits.

For the experiments described here, a C-language re-
implementation of Russell and Norvig’s wumpus world sim-
ulator was used for fitness evaluation. The world size was
6-by-6, the population size was 1,000 and the maximum
number of generations per run was 21. Tournament selec-
tion was used with a tournament size of 7.

Results

Symbolic Regression

100 runs were performed with no memory, 100 with indexed
memory, and 100 with culture. Figure 3 shows a graph of
P(M,i), the cumulative probability of success by genera-
tion. Note that the highest probability was obtained in the
runs that had access to culture. Figure 4 shows I(M,i,z),
the number of individuals that must be processed to pro-
duce a solution with probability greater than z=99%. Note
that the lowest number of individuals was obtained using
culture. I(M,i,z) values are always very high in early gener-
ations; early generations are therefore not shown in graphs
of I(M,i,z) so that the detail in the later generations can be

3In the experiments described in (Spector, 1996) agents were
also charged an explicit 100-point penalty for dying. In the version
used here the only penalty for death is implicit—after one dies one
can no longer get closer to the gold or pick it up.
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Figure 3: P(M,i) for the symbolic regression problem.

seen. The computational effort results (the minima of the
I(M,i,z) graphs) are summarized in Table 1.

Wumpus World
400 runs were performed with no memory, 509 with or-
dinary indexed memory, and 800 with culture.4 Figure 5
shows a graph of P(M,i), the cumulative probability of suc-
cess by generation. Note that the highest probability was
obtained in the runs that had access to culture. Figure 6
shows I(M,i,z), the number of individuals that must be pro-
cessed to produce a solution with probability greater than
z=99%. Note that the lowest number of individuals was
obtained using culture. The computational effort results are
summarized in Table 2.

Discussion
Conclusions from Computational Effort Results
The symbolic regression results show that the addition of
an ordinary indexed memory increases the computational
effort required to solve the problem. This may be because
there are many programs that compute the desired function
(y = x4

+ x3
+ x2

+ x) without using memory. In addi-
tion, the functions READ and WRITE may act as noise in

4Computational effort comparisons are indeed valid between
sets of different numbers of runs. For these computationally ex-
pensive runs we started processeson several machines and stopped
them when it was clear that we had obtained sufficient data; the
exact numbers of runs are therefore arbitrary.
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the function set, contributing little to success while filling
positions that could instead be filled with useful functions.
Nevertheless, when the memory is shared between individ-
uals as culture, the system is able to take advantage of this,
and the computational effort is reduced to 61% of that re-
quired when no memory is available (49% of that required
with ordinary indexed memory).

The Wumpus world results exhibit the same pattern, al-
though the results are noisier and the interpretation is there-
fore less clear. When culture is used the computational effort
required to produce a successful Wumpus world agent is re-
duced to 81% of that required when no memory is available
(66% of that required when ordinary indexed memory is
used). Surprisingly, indexed memory once again increases
computational effort over the “no memory” condition. It
appears that the reactive strategies are at least as useful as
knowledge-based strategies for this domain.

The results show that culture-supporting mechanisms
may be quite useful within some cognitive system archi-
tectures. Their utility is demonstrated by their impact on
the computational effort required for evolution; less effort is
required to produce successful cognitive systems when the
culture-supporting mechanisms are present than is required
when they are not. In summary, culture enhances the evolv-
ability of cognition, at least for the tasks and evolutionary
mechanisms presented here.

Generality
While culture has been useful in most of the domains to
which we have applied it, further work must be conducted
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Figure 5: P(M,i) for the Wumpus world problem.

Condition Computational Effort
No memory 899,000
Memory 1,131,000
Culture 551,000

Table 1: Computational efforts for symbolic regression.

to characterize the relationship between domain character-
istics and the expected impact of the technique. For exam-
ple, the Wumpus world environment can be varied in many
ways, and the relative utility of memory and culture may
differ in each of these variants. We are currently conduct-
ing experiments with several variants and it is clear from
the preliminary results that culture is not always beneficial
in Wumpus world. In particular, for a configuration similar
to that of (Spector, 1996) it appears that ordinary indexed
memory is best, followed by culture. Here we may gain
insights from biological examples; not all animals use cul-
ture, and there are presumably many niches in which culture
confers no adaptive advantage. On the other hand, culture

Condition Computational Effort
No memory 1,710,000
Memory 2,100,000
Culture 1,386,000

Table 2: Computational efforts for Wumpus world.
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appears to be extremely useful in certain situations (e.g.,
for humans). This suggests that we might expect corre-
spondingly large impacts in certain genetic programming
domains.

Although the evolution-enhancing effects of culture were
demonstrated only for genetic programming systems, there
are reasons to believe that the effects are more general. Bon-
ner (1980) has described a number of ways in which culture
can enhance adaptation and alter the course and speed of
evolutionary processes. Several features of organisms and
of their environments can contribute to the possible utility
of culture, and there is no reason to believe that the genetic
programming paradigm exploits these features any more
effectively than might other evolutionary computation sys-
tems or natural biological evolution. The utility of culture
is largely driven by the demands and resources of a task
environment; if it contains important regularities that can
be taught and learned then it may be advantageous for in-
dividuals to transmit such information behaviorally. One
reason is that the encoding of the information in behav-
ior (including “writing” and “teaching” behaviors) may be
simpler than the encoding of the same information in the
organism’s genetic code. Another reason is that informa-
tion can spread through a population much more quickly by
behavioral means than it can by genetic means.

Future Work

From an engineering perspective, the present study suggests
several directions for additional research. The generality

of the observed effects should be further studied through
applications to other problem environments. The combined
use of ordinary indexed memory and culture should also
be examined. Variations of the technique, for example to
limit the destructive effects that unfit individuals can have
on the culture, should also be explored. All of these studies
may further enhance the utility that culture provides in the
genetic programming of problem-solving systems.

From a cognitive science perspective, the present study
suggests a new research paradigm that could be applied
not only to the further study of interactions between evo-
lution and culture, but also to the study of other aspects of
cognition. Computational modeling has a long history in
cognitive science, but modeling by means of evolutionary
computation is relatively new. Within this framework mod-
els are automatically generated by evolutionary processes.
One immediate benefit is that the development of models
may thereby require comparatively little time and effort.
The resulting models may in some cases be difficult to ana-
lyze, but several sorts of meaningful data may nonetheless
be extracted. For example, the models may be run on new
inputs, compared to hand-crafted models in various ways, or
“lesioned” to assess their fault-tolerance and failure modes.
Alternatively, as in the present study, meaningful data may
be extracted from the evolutionaryprocess, rather than from
the resultingmodels. Evidence against a set of hypothesized
cognitive mechanisms could be produced, for example, by
showing that it is difficult or impossible to evolve the ap-
propriate sorts of cognitive systems using the hypothesized
mechanisms as primitives. Similar strategies could be em-
ployed to provide evidence for or against general cognitive
architectures. Existing techniques can be used to measure
the computational effort required to evolve systems under
various conditions, and the comparisons can be made “fair”
by using the same evolutionary mechanisms for each set of
conditions. This contrasts to ordinary computational cogni-
tive modeling, in which different models are often produced
by different programming teams. In some of these cases it
may not be clear which aspects of the performance of the
resulting systems are due to the underlying theories, and
which are due to the strengths and weaknesses of the pro-
grammers.
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