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ABSTRACT

Flow is an open source additive synthesizer that is very
capable, but is specifically designed to be programmed by
a musician without requiring the extraordinary number of
parameters commonly demanded by additive synthesis. To
achieve this, Flow works largely like a modular synthesizer,
except that modules pass arrays of partials to one another
rather than audio. Flow is polyphonic and multitimbral,
supports MPE and microtonality, and easily extended and
hacked. This paper describes Flow, its motivation, and its
architecture, and discusses some of the lessons learned in
its development and use as an instrument.

1. INTRODUCTION

Flow is a large additive software synthesizer with an un-
usual combination of features. It is polyphonic and mul-
titimbral. It has full support for MIDI features including
MPE and microtonality. It allows for up to 256 sine waves
(partials) with both real-valued frequency and amplitude,
but not phase. But most importantly, it is structured as a
fully modular synthesizer, including cyclic patch connec-
tions, and patches can have any number of modules. Flow
has over 70 modules available. Patches may contain special
modules which encapsulate entire other patches (so-called
macros). Flow is written in Java and is free open source,
available at https://github.com/eclab/flow

I began Flow in 2018 with a specific experimental hypoth-
esis in mind: is it possible to make a sophisticated additive
synthesizer which does not overwhelm the musician with a
massive number of required parameters? I think the answer
has proven to be yes.

An additive synthesizer commonly changes a large num-
ber N of sine waves dynamically in real time, and each of
these waves may have some M parameters defining how
it changes over time, and so the total number of parame-
ters can get large very quickly. Thus additive synthesis is
notorious for its high number of parameters and tedious
programming.

Rather than control each wave independently, Flow in-
stead treats the entire set of waves as a group and passes
them through a graph structure of modules. Each module
sculpts the waves in different ways, ultimately outputting
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the result. You might recognize this architecture: it is the
architecture commonly used by subtractive modular synthe-
sizers. However, Flow’s modules are rapidly passing arrays
of partials to one another rather than sound waves, and are
operating on the sound solely in the frequency domain, not
the time domain. In essence, Flow is applying a classic
modular subtractive interface to additive synthesis.

2. HISTORY AND RELATED WORK

Additive synthesis is very old. Indeed, organ ranks may
be considered mechanical additive synthesizers, with each
rank contributing new partials to the final sound.

Early additive synthesizers were electromechanical.
Among the very most important early synthesizers was
Thaddeus Cahill’s extraordinary Telharmonium, a massive
additive synthesizer circa 1896. The Telharmonium used
rotating tonewheels and magnetic dynamos (pickups) to
sum harmonics and broadcast the resulting sound to remote
listeners. Figure 1 illustrates the tonewheels. Many of these
concepts have since found their way into the Hammond
Organ, which even now applies tonewheels and pickups to
produce its sound.

In 1964 James Beauchamp developed the Harmonic
Tone Generator [1] at the University of Illinois, Urbana-
Champaign. This instrument used analog electronic circuits
to synthesize a tone of six harmonics. Much electronic addi-
tive synthesis since then has been digital, and has often been
associated with the analysis of sounds in addition to their
synthesis. Starting in 1967, Jean-Claude Risset used Bell
Labs’s Music V software [2] to analyze and reproduce trum-
pet and later bell sounds [3]. The phase vocoder [4], also
developed at Bell Labs, has likewise served as an analysis
and additive resynthesis tool [5].

Notable early examples of digital additive synthesis for
music production included the RMI Harmonic Synthesizer,
the Fairlight Qasar M98 and CMI, and the New England
Digital Synclavier II. In the 1980s and 1990s, Teisco/Kawai
was perhaps the biggest producer of additive synthesizers,
including the K3, K5, and K5000 series of synthesizers,
with increasingly powerful additive synthesis capabilities.
For further discussion of these and other examples, see [6].

Nowadays additive synthesis is less common and largely
relegated to software. There are still many examples how-
ever, including Native Instruments’s Razor, Image-Line’s
Harmor, Camel Audio / Apple’s Alchemy, and AIR Music
Technology’s Loom. Additive synthesis is also popular in
the open source community, perhaps because simple ver-
sions of the technique are easy to implement.
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Many software synthesizers take a classic approach to
additive synthesis, attaching modulators to each of the in-
dividual harmonics or partials. But a few, including some
of the recent software synthesizers mentioned earlier, take
an approximately modular approach which to some degree
resembles Flow. Probably the most similar to Flow is AIR’s
Loom [7], in which a fixed number of processing modules
are arranged in series. Each module receives an array of
partials, modifies them in some way, and passes them down
the line to the next module. Thus unlike Flow (as discussed
later) there is only a total ordering among the modules.
Each of these modules may then be modulated by a fixed
set of separate modulation functions.

3. ADDITIVE SYNTHESIS IS HARD TO USE

Additive synthesizers usually produce sound by continu-
ously changing the features of some N sine waves, or par-
tials, and outputting their sum. These sine waves may differ
in frequency, amplitude, and phase, and all three of these
characteristics can change dynamically with time. In the-
ory, if N is sufficiently large, and the change over time is
sufficiently rapid, an additive synthesizer can produce any
sound with adequate fidelity.

From an algorithmic standpoint, additive synthesis is triv-
ial: we’re just adding sine waves. But from the musician’s
perspective, additive synthesis can be very hard, as it can
present a huge parameter space. This is because in its
general form, additive synthesis requires at least 3N time-
varying functions (frequency, amplitude, and phase for each
of its N partials), each with sufficient parameters to describe
the change over time of a partial when played.

Some simple additive synthesizers require only a few par-
tials, but to make rich or complex sounds it is not uncom-
mon for N to be large, often in the hundreds, particularly
to adequately describe low tones. This can result in a very
large number of parameters to program. For example, a
single patch for the Kawai K5000 series — which were well
regarded additive synthesizers — could have up to 6000
parameters.

There is also the computational cost to consider. These
N sine wave functions must be calculated in real time per
voice, which can be expensive, though in certain cases
depending on the nature of the architecture, and the limits
on the sound generated, this cost can be reduced by using a
Short-Time Fourier Transform.

I think that these two challenges are the main reasons why
additive synthesis has not been as popular as other methods.
And these challenges are so dominant that many additive
synthesizer designs are forced to reduce the parameter space
in one way or another. Additive synthesizers generally use
one or more of three strategies to do this.

First, it is very common for additive synthesizers to con-
strain the frequency of each sine wave to be an integer
multiple of the fundamental. That is, they work not on
partials but on arrays of harmonics. This simplification
is justified under the assumption that sounds perceived as
tonal are often largely composed of harmonics: noise or
anharmonic sounds might be added in after the fact in a
traditional subtractive manner.
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Figure 1. Illustration from 1897 Telharmonium patent filing,
showing additive tonewheels.

Second, many additive synthesizers discard the phase of
each sine wave in a voice, resetting it to 0 each time a new
note is played. This simplification is justified under the
presumption that, at least for the higher frequency sounds,
it can be difficult to distinguish between two sounds which
only differ in the (arbitrary) phases of their respective par-
tials. Furthermore, if synthesizers are constrained to just
produce harmonics, they cannot get out of sync with one
another in phase, and so starting at 0 is reasonable.

Third, synthesizers might reduce the total number of par-
tials, or skimp on the complexity of the modulation used
to manipulate each of them. For example, let us restrict
ourselves to just the Kawai synthesizers: while the Kawai
K5 had 126 harmonics per voice, the K5000 series only had
64, though it could overlay multiple sets of harmonics in
some situations. The K3 had just 32 harmonics, which is
not atypical for many simple additive synthesizers. On the
other hand, while the K5000’s harmonics each had their
own envelopes, the K5’s harmonics had to share just four
of them.



Starlight

DADSR
N TMnd Q\ ou Q| ou @
lay Time y Input ut
s O O
nD&‘ﬂV evel \O utof caling
0.9000

) Rate
0.19392 Sec

© T

O Phase n Decay -
0.0000 0.8945 O State Normalize “‘\
Scale Volume ‘Attack Time

(Qky=% O oonis ) 0 13esec Hr 00N Standardize

O O™ O O™ | Qo
Variance Probability Decay Time (V= o

o 1.0000 n 1.0000 O 0.6982 Sec Relative =
Seed Seed Sustain Level

015000 %000 055000 Taper
OnTr Release Time

O G000 Hold 03152 sec Qonly ot

Type Oony  Not () Release Level None r

Random Noe @ 0.0000

Oont

0.0000 Sec

o
0.0000

Curve

Free Free

Invert Invert

Half Trigger Half Trigger

xA2

Linear Rate Linear Rate

One Shot

MIDI Sync MIDI Sync

Gate Reset

Init Trigger Init Trigger

MIDI Sync

°0~0°0
sOrO:0

©aA @udio) ;‘:"I‘“m
arligl
J&) nput A Trig Q) |[(7) Delay Time JE A version
Q) bus Trig Q|| ~ DelayLevel Os !
i o 0.0000 Author
Q (FZEE "’“8.8 yAackTime | |[() e O‘l’ scopey 5630 LUke
Input D Trig 0.0442 Sec - ( - 1O+ %P pate
8 Interpolation n_/lmack Level Ow ““Not O only 1 Not”| 2 (A November1,2018
0000 || o || e
'?7%;: 'e) Decay Timg eertf™ None E)_jMone e (O 3 .
1P g L: ] e (@] 0.0000  Patch for much of the
e () SstainiLew 4 development of Flow.
1.0000 0.5000 0.0000  t's a combination of
Type (@) se;;;esﬂme Gain Tinkle, filtering, and
Normal L) Release Level 20000
o) sty O hear the original
Fundamental o g 00000 version of Starlight
Damp  Withjava
9 Frequency Qs (Doooeo  flow.gulTest.
2 Amplitude O o000 O,
Curve .
Free Pan
Random Linear = - Edit
Deph:
@ only Not One Shot S
None <) Gate Reset
MIDI Sync
Fast Release
Yoltelte)
sO=0:0

Figure 2. Flow interface, showing the partials displays, oscilloscopes, and sound output at top, the modules of a patch at

center, and the optional keyboard at bottom.

4. FLOW

Flow takes a different approach. Rather than modulate the
parameters of individual partials over time (though it can do
that), Flow passes whole sets of partials through modular
functions which manipulate them as a group. Flow is very
much like a classic modular synthesizer, except that the
modules work in the frequency rather than time domain:
they do not pass sound to one another, but rather arrays of
partials. Modules can be connected in any way the musician
sees fit. Flow presently supports:

e Up to 256 partials, user-selectable.

Partials with floating-point frequency and amplitude.
Phase is discarded.

Any number of modules per patch.
1-32 voice polyphony, user-selectable.

Full multitimbrality. Only one timbre at a time may
be manipulated in real-time in the UL

Sampling rates up to 48KHz, at 16 bit depth.

MIDI Polyphonic Expression (MPE) [8], Clock Sync,
Channel and Polyphonic Aftertouch, Pitch Bend,
NRPN, RPN, and CC.

Microtonal architectures via Scala files [9].

The idea is that, rather than manipulate each partial, the
musician can select a small set of functions to manipulate
the partials in a predictable way, which presents a much

simpler and more intuitive interface. However, this combi-
nation is also computationally expensive. However it also
presents a much easier environment for the musician to
construct additive patches.

5. INTERFACE

Flow presents itself as a modular software synthesizer in a
fashion similar to VCV Rack and similar [10]. An example
of Flow’s interface is shown in Figure 2. At the top of the
window are two (long) displays for showing the frequency
and amplitude of partials in a sound: the one at left displays
the partials of the sound being generated. Also, (centered)
are two oscilloscopes for modulation signals, and (far right)
one oscilloscope for the final sound output. These displays
are optional. Also optional is the small keyboard at bottom.

A Flow patch consists of some N modules, each con-
nected via virtual patch cables. In the center of the window
(Figure 2) are the patch’s modules, arranged left-to-right
first-to-last. Modules may be added, removed, and changed
in order relative to one another.

5.1 Patch Cables and Patching

There are two types of patch cables, and they connect only
to input and output sockets of their type. First there are
sound cables (drawn with thick lines) along which sound
data is transferred in the form of arrays of 256 partials.
Each partial consists of a frequency, an amplitude, and an
ordering, a unique number 0...255 which represents the sine
wave generator in the Output’s generator bank associated
with that partial (see Section 8.4). Partials in the array
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Figure 3. Flow interface, showing the modules of the primary patch and five multitimbral subpatches below.

are always sorted by frequency, as the large majority of
modules’ algorithms benefit from frequency ordering. Flow
pulses each of its modules in order left to right, and when
a module is pulsed, it retrieves the latest incoming partials
from modules connected to it, then produces a new array of
partials for other modules to request from it. Flow attempts
to pulse all the modules as quickly as possible.

Second, there are modulation cables (drawn with thin
dashed lines), along which modulation — essentially con-
trol voltage — data is passed from module to module. Flow
offers two twists on the traditional modulation cable. First,
these cables are not plugged into jacks per se, but directly
into the modulation dials on each module. For example,
a Filter module might have a cutoff frequency dial, either
settable directly by the musician, or pluggable with a ca-
ble to control it instead. If it is useful for a parameter to
be both modulated and user-controlled, the module simply
provides two dials. Second, modulation cables carry not
only modulation signals but also one or more typed triggers
which signal events which have occurred. Triggers are used
for many purposes. For example, an LFO module might
output along its cable not only the LFO signal itself, but
also a trigger fired each time the LFO has completed one
period: this could then be attached to a sequencer to clock
it. Modules request data along modulation cables in the
same manner as is done for partials.

Flow rarely uses gates. This is because all modules di-
rectly receive cooked MIDI event information, including
notes, control change and pitch bend information, etc. The
most common use of gates in a modular synthesizer is to
provide note on/off, which Flow’s modules already know
about.

Normally cables are forward-patched, meaning that there
is a partial order of data flow among the modules from
early (leftmost) modules to later (rightmost) ones. However
nothing precludes a musician from back-patching: connect-
ing a cable to flow data from a module to an earlier one
to its left. A common use of back-patching is to provide
delayed feedback loops. Thus Flow’s patching structure can
accommodate any cyclic directed graph. Back-patching is
handled in the obvious way, namely that when the upstream
earlier module requires partials or modulation data from the
downstream module, it receives the previous data from the
last iteration.

Flow has one special module called Out, of which exactly
one copy always exists in a patch. Out is a sink which re-
ceives partials data and hands it off to the system to process
into sound.

Though the musician only perceives one set of modules,
in fact Flow maintains an independent set of modules for
each voice to provide for polyphony.

6. MULTITIMBRALITY

Flow is not only polyphonic but also multitimbral. In a clas-
sic multitimbral synthesizer there exist both single-mode
and multimode patches. A single-mode patch describes a
single kind of sound. A multimode patch contains multiple
different single-mode patches, or references to them, and
states how voices and other performance elements are to be
allocated to the various single-mode patches.

Flow’s approach is a little different. Flow patch files con-
sist of a primary (single-mode) patch, and zero or more
(single-mode) subsidiary patches. Both the primary and



subsidiary patches have voices, MIDI data, and the like allo-
cated to them, but only the primary patch can be edited and
manipulated by the musician during performance. However
the musician can, at any time, swap the primary patch with
any subsidiary patch, so the subsidiary patch can now be
manipulated instead. Subsidiary patches can be loaded or
discarded from the main patch at any time.

7. MACROS

One of Flow’s most unusual features is its Macro facility.
After you have created a patch and saved it to disk, it is
possible to load that patch and encapsulate it into a single
module (a Macro), to be used among other modules in
another patch.

The Out module contains not just a single jack to receive
output partials, but three more auxiliary jacks of this kind,
as well as four modulation jacks. All eight of these jacks
can be named, and so when a patch is loaded as a Macro,
the Out jacks connected in the patch are exposed as the
Macro’s outputs. Furthermore, the patch may have one
or more copies of an optional module called /n which has
eight nameable input partials jacks and eight nameable input
modulation jacks, plus default modulation values for them.
If connected, these then appear as inputs to the Macro.

Macros are pulsed in a depth-first fashion: when the Macro
module is pulsed, it loads the needed data for its /n module,
then recursively pulses all of its internal modules left-to-
right once, including recursive nested Macros, then prepares
resulting data from its Out module to provide to downstream
outer modules.

Flow comes with a number of examples of Macros as
useful utilities. These include formant voices, sound fatten-
ers, brick wall filters, random drift utilities, bad attempts at
supersaws, etc.

8. MODULES

Excepting Macros, Flow at present has 71 modules divided
into five categories. The title bar color of each module
reflects its category (see Figure 2). It is straightforward to
add new modules to Flow, and the manual has step-by-step
tutorials explaining how to do it.

I will not here subject the reader to the tedium of enumerat-
ing all these modules, but will highlight a few as examples.

8.1 Partials Generators

These are the rough equivalent of oscillators in a typical
synthesizer. Flow has 20 partials generators, producing
arrays of partials from common waves (like sawtooth), or
from modulatable wavetables and vocoders, from musician-
specified partials or harmonics, from time-varying functions
that introduce and remove partials, and so on. Flow also
sports modules producing partials derived from the waves
or harmonics of other historic synthesizers, namely the
Casio CZ series, Kawai K3 and K5, Ensoniq SQ-80, and
Sequential Prophet VS, as well as those from the Adven-
tureKid Waveform collection. [11]. Note that though the
original data for some of these modules is derived from

time-domain waves, these modules are all purely additive
and frequency-domain.

8.2 Partials Modifiers

Flow has 28 modules which take partials as input, modify
them, and output the result. These include a variety of time-
varying filters, amplifiers, and mixers or combiners, but also
many other modifiers special to Flow’s additive nature.

Filters are particularly interesting. Among its other filters,
Flow has modules which model N-pole filters, but does
not have to restrict itself to Z-domain style digital filters.
It can model a Laplace-domain (analog) filter clear to the
Nyquist frequency, simply by applying the filter’s amplitude
response function to each partial. The phase effects of filters
are, however, ignored.

Flow also has several modules dedicated to taking multiple
additive partials streams and combining them in some modu-
latable fashion. This includes everything from cross-fading
to morphing the frequencies of partials to partial-by-partial
dissolves.

Combination is nontrivial because Flow has a fixed num-
ber of total partials, and so when two partials streams are
combined, we must decide which partials don’t make the
cut. The combiners vary largely in the strategy used to
select partials, or to gradually introduce partials and remove
others under modulation. Additionally, when a partial is
removed and another is introduced, the corresponding sine
wave generator is lurched from the frequency and amplitude
the first partial to the second, and in so doing combiners
must employ schemes to prevent these changes from pro-
ducing pops and other unwanted artifacts.

Flow also contains modules peculiar to the frequency do-
main, such as skeletonization and dilation, fattening (dupli-
cating and detuning specific partials), adding frequency or
amplitude jitter to them, shifting and rotating select partials,
as well as delays and transition smoothers, and so on.

Nearly every partials modifier module can be constrained,
that is, restricted as to which partials it is permitted to op-
erate on. In many cases this is as simple as performing
a function on every partial, then restoring certain partials
to their previous values. In many other situations, notably
combination modules, constraints are more complex.

8.3 Modulation Generators and Modifiers

Flow has 17 modules dedicated to generating, or modifying,
modulation signals. These include the usual suspects such
as LFOs, several envelope generators, sequencers, joysticks,
sample and hold, and the like. They also include modules
that expose a variety of MIDI features and event data not
used by modules by default, including MPE modulation,
NRPN, CCs, etc.

8.4 Utility Modules

The remaining modules are prosaic: Out and In as described
before, plus modules for stretching patch points, adding
textual notes, locking sounds to specific pitches, and so on.



9. THREAD ARCHITECTURE AND SOUND
GENERATION

Flow consists largely of two parts: voice management and
additive output. For each and every voice, the voice man-
ager maintains a separate copy of modules in order to pro-
duce the latest partials of the sound. These partials are then
handed to the additive output, which maintains its own in-
dependent bank of threads to push the partials though sine
wave functions, add them up, and add effects.

Given that Flow is multitimbral and polyphonic, it should
not then be surprising that Flow is very heavily multi-
threaded. As shown in Figure 4, Flow consists of a MIDI
Input Receiver thread, which receives and processes all in-
coming MIDI data. This is passed to the Voice Sync thread,
which manages per-voice processing of each of the modules.
Each voice has its own set of modules and works with a
(possibly shared) thread to usher partials from one module
the next, and ultimately to the Out module. The Out module
serves as the interface between the Voice Sync thread and
the Sound Output thread. Once the latest partials from all
voices have all arrived, the Sound Output thread takes the
partials and updates the sine waves being used to produce
the sound. This update is done with a leaky integrator so
as to not produce artifacts stemming from a sudden change
in frequency or amplitude. The Sound Output thread main-
tains a bank of output threads which divvy up the current
sine waves and continually produce the latest sine output
values. The sum of these values is then pushed through a
Freeverb reverb implementation and output as sound.

The GUI also has its own separate event thread: this thread
largely interacts with the Voice Sync thread to change mod-
ule parameters and architecture; though at times it does
work with the MIDI Input Receiver and Sound Output
threads.

The Voice Sync threads are asynchronous from the Sound
output threads: even if the patch’s modules take a long
time to run, and so the partials are slow to arrive, the output
threads still work in the background to keep the sound buffer
filled. Flow can be asked to try to maintain a rough ratio of
output samples to voice sync partial updates. By default this
is normally around 16 to 32 samples generated per partials
update.

10. DISCUSSION

I think Flow has been very successful as a demonstration
of how to reduce the parameter complexity of additive syn-
thesis. I and others have long used it as a performance and
sound design tool, but it has also been particularly useful
to me in an educational context, illustrating how sound
synthesis works in the frequency domain.

Development and subsequent use of Flow has nonetheless
brought up interesting issues worth discussing here.

10.1 Consequences of Disregarding Phase

Like many additive synthesizers, Flow discards phase as a
computational and interface simplification measure. How-
ever while additive synthesizers constrained to harmonics
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Figure 4. Flow’s primary threads. Touching circles implies
locking interaction.

do not need to concern themselves with changes in relative
phase, Flow’s partials can change in frequency in real-time.
Consider two sine waves of the same frequency and phase,
playing in unison. Flow modifies the frequency of one of
them by some arbitrary amount, waits for a moment, then
returns the frequency to its previous value. Now the two
waves are out of phase.

For higher frequency notes, such as above middle C, the
difference in sound can be negligible. But this is not the
case for lower notes. The ability of humans to discern the
difference between in-phase and randomized-phase partials
grows dramatically with lower frequency [12]. Particularly
in the case of very low frequencies, highly synchronized
sounds such as square waves sound very different when
their respective partials are out of phase with one another,
not the least of which is because of the sudden and large
jump in the sound wave (such as the vertical portion of a
sawtooth) when all the phases are in sync.

Flow cannot compensate for patches which shift the
phases of their underlying partials: the change in sound
will be part of the nature of the patch’s timbre. However it
does reset their phases when a new note is played. Further-
more, Flow patches have an option (“Dephase”) to add to
each partial a specific deterministic random phase amount,
and this masks most perceived phase changes when indi-
vidual partials’ frequencies are modified. In my experience,
dephasing a low-frequency sawtooth or square wave also
makes it sound “smoother”, less harsh, and somehow more
electric. This may or may not be desirable.

Though Flow gets along fine without phase, sometimes
phase would be helpful, particularly in sampling sounds and
reproducing them, such as with a phase vocoder. Flow’s
Wavetable module can record sounds (speech, say), chop
them up into individual harmonics, and reproduce them, but
as it lacks phase information it can only do so in a robotic
fashion reminiscent of old-style vocoders.

10.2 Technical Issues

Flow’s architecture brings up a number of technical issues.
Here are three.



10.2.1 Number of Partials

Flow at present has only 256 partials, which is fewer than
commercial additive synthesizers (for example, 384 in Har-
mor or 512 in Loom). This is not due to a technical limita-
tion. The only reason for this is that Flow uses a single byte
as the ordering ID for a partial, that is, the tag that identifies
which sine wave generator is assigned to the partial. In the
future Flow may move to a short or int, which would allow
far more partials.

10.2.2 Partial Update Rate

Flow’s per-voice sync threads are typically set to be slower
than its output threads: as mentioned before, it’s common
for about 16 to 32 samples to be generated per partials
update, though this can be changed if you have a fast enough
computer. Furthermore, after new partials arrive the current
partials are gradually adjusted to match them using a leaky
integrator. This introduces latency.

This disconnect also has curious effects on extremely short
sounds, particularly bursts of noise such as for a click or
snap. Because the onset of the click is not synced to when
the next set of partials is updated, clicks will not be con-
sistent in amplitude. Additionally, because partials are
not updated 1:1 with samples, modeling FM synthesis etc.
would be difficult.

10.2.3 Use of Java

Flow is written in Java, and this allows Flow to be easily
ported to a variety of platforms. While Java is a very fast
language, one of its slowest areas is array access, and Flow
relies heavily on array access for its partials. Nonetheless
I have found Java more than sufficient to handle Flow’s
computational requirements.

Java is a garbage collected language and does not provide
much control over how or when it happens. Java’s tradi-
tional garbage collectors may occasionally produce a glitch
in the sound output as Flow is unable to fill the sound buffer
while being garbage collected. However Java’s new low-
latency collectors, such as its Z collector, entirely eliminate
this issue.

The primary disadvantage of Java is that it is generally
incompatible with the VST API; as a result Flow will likely
remain a standalone application rather than embeddable in
a DAW.

10.3 Specific Value of Additive Synthesis

Flow has a many useful modules which are peculiar to addi-
tive synthesis. For example, Dissolve will cross-fade from
one sound to another but will do so by replacing random
partials one-by-one in one sound with the other. Jitter will
add random noise to the amplitude and/or frequency of
select partials. Shift will, among other things, change the
amplitude of each partial to that of the partial immediately
below it in frequency. And so on.

However it is also true that Flow contains other mod-
ules which are essentially additive versions of subtractive
classics, such as filters, amplifiers, mixers, and oscillators
producing traditional waves. And I have found that, in

my own patch development, I do often use these modules.
The open question is why. Is it because I am used to these
sounds historically and so sometimes gravitate to them? Is
it because they are easy to understand and integrate? Or
is it because many designed-for-additive modules can re-
sult in significant anharmonicity or manipulation of high
frequencies?

Flow was developed partly in the hope that additive synthe-
sis would offer sounds or programming approaches which
were fundamentally different from subtractive synthesis de-
signs. I strongly believe it does. But the question as to what
degree this is true is worth examining further.

11. CONCLUSION AND FUTURE WORK

Flow was originally conceived as part of an effort to develop
an additive synthesizer with sophisticated patching, modu-
lation, and partial-manipulation capabilities, but which did
not impose on the musician the tedium of programming a
large number of parameters. To this end, Flow has adopted
a modular synthesis approach, transferring entire sets of
partials from module to module to be processed. While
this pipeline approach has been adopted occasionally by
other software, Flow goes rather further along this route,
providing arbitrary connection graph structures including
ones with cycles, any number of modules, and recursive
module development in the form of macros.

Even though Flow does not require large numbers of pa-
rameters, it still has a very large array of options, because it
has many modules and the musician can arrange and con-
nect any number of them in any order. This makes attractive
the notion of automating the patch-development process in
order to search the space of patches more effectively.

I have previous work in automated patch exploration and
co-creative tools. I have developed a large patch editor tool
for many synthesizers, called Edisyn [13]. Part of Edisyn
is a facility which uses evolutionary computation methods
(such as the Genetic Algorithm) to work with the musician
to explore the space of patches without having to program
them. In this approach, known as interactive evolution, the
program auditions some N patches to the musician, who
selects those he prefers. Based on this information, the
program mixes and matches, then slightly mutates, these
patches to create N new patches in the vicinity of the musi-
cian’s selections, then auditions them to the musician, and
so on. Essentially, the program is co-creatively working
with the musician to wander through the space of patches
towards those he likes best.

This technique exploits the fact that the large majority of
synthesizer patches may described as fixed-length arrays
of numbers. But Flow’s patches are arbitrary graph struc-
tures, which presents a large and non-metric space without
a proper distance measure. Such spaces are difficult for
evolutionary computation and other stochastic optimization
methods to tackle efficiently, though there are certain ap-
proaches, such as genetic programming, which might be
applied [14]. As future work I am interested in asking how
these methods might be used, and to what degree, to sim-
plify the task of programming additive synthesizers even
more.
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