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ABSTRACT
We examine opportunistic evolution, a variation of master-
slave distributed evaluation designed for deployment of evo-
lutionary computation to very large grid computing ar-
chitectures with limited communications, severe evaluation
overhead, and wide variance in evaluation node speed. In
opportunistic evolution, slaves receive some N individuals
at a time, evaluate them, and then run those individu-
als through their own mini evolutionary loop until some
fixed wall clock time has been exceeded. Our implementa-
tion of opportunistic evolution may be used in conjunction
with either a generational or, for maximum throughput, an
asynchronous steady-state evolutionary model in the mas-
ter. Opportunistic evolution is strongly exploitative. We
perform initial experiments comparing the technique with a
traditional master/slave model, and suggest possible classes
of problems for which it might be apropos.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global Optimization; C.2.4
[Distributed Systems]: Distributed Applications

General Terms
Algorithms
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Distributed Evolutionary Computation

1. INTRODUCTION
As part of a NASA-funded project, we have developed

Origin [12], a deployment of the ECJ evolutionary com-
putation toolkit to a commercial Java-based grid comput-
ing platform known as Frontier, by Parabon Computation.
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Frontier enables grids of very large numbers (tens or hun-
dreds of thousands) of nodes—typically PCs with unused
CPU cycles in large organizations. In addition to its com-
putational grid deployment platform, Frontier also acts as
a brokerage system: Parabon contracts with large organi-
zations to host Frontier on their personal computers, then
sells access to these machines to Parabon’s clients.

This model imposes considerable security constraints, as
organizations are understandably concerned about compro-
mises to their infrastructure. These security constraints in
turn place restrictions on communications between nodes
and on the speed of communications (due to firewalls and
virtual private networks). Additionally, available nodes may
be anywhere in the world, resulting in significant additional
communications costs. Finally, there may be a wide variance
among the speeds of the nodes available.

How might one host a distributed evolutionary computa-
tion system on such a platform? One could use Frontier’s
remote machines as slave nodes in a distributed (master-
slave) evaluation system. However, the severe communica-
tion overhead can hinder this approach unless evaluations
are very long. Ordinarily we would turn to an island model,
which can operate in a low-communication environment.
However, the remote machines are usually not allowed to
communicate with one another: only with the master node.

Our solution to this conundrum is, ironically, a hybrid of
the island and distributed evaluation models, in combina-
tion with either generational or asynchronous steady-state
evolution, which we collectively term opportunistic evolu-
tion (OE). Here, a master evolutionary computation process
sends groups of individuals to each remote slave process to
be evaluated. But instead of evaluating them and returning
them immediately, each slave engages in its own mini evo-
lutionary loop for a period of time sufficient to justify the
communication costs. The slave then returns individuals to
the master. This curious configuration is motivated by the
desire to use constrained Frontier to its maximum capacity.
We do not argue for some evolutionary advantage inherent
in OE: only that it makes good use of constrained but plen-
tiful computational resources. The question we ask is: for
what problems will it perform well?

In this paper we first discuss parallel methods, ECJ, and
Frontier, then introduce the technique and report our ex-
periments with it. On Origin, we primarily use an asyn-
chronous steady-state evolution model as it is makes better



use of nodes of widely varying speed. But this paper we
will instead focus on a generational model, as it is easier
to directly compare OE with a plain distributed evaluation
procedure in order to more easily assess what kinds of prob-
lems may be amenable to the technique.

The rest of this paper is organized as follows: Section 2
discusses parallel evolutionary methods including ECJ. Sec-
tion 3 introduces Frontier and Origin, while Section 4 in-
troduces OE. Section 5 discusses experimental results, and
Section 6 provides conclusions.

2. PARALLEL EVOLUTIONARY
COMPUTATION METHODS

Because of its population-oriented structure, evolutionary
computation has long been an easy target for parallel com-
puting (see for example, the surveys in [4] and [11]). Much
of the parallel evolutionary computation literature may be
broken, perhaps unfairly, into roughly four methods:

Distributed “Master/Slave” Generational Evaluation.
When a generational evolutionary computation process
needs to evaluate individuals, it does so by sending them
to remote “slave” processes to be evaluated in parallel. The
slaves then return the individuals or their assessed fitness
values. This may be done synchronously (for generational
evolution) or asynchronously (for steady-state evolution).

Directed Breeding and Evaluation. The population is
broken into multiple subpopulations, each subpopulation re-
siding on a different slave process. The master evolutionary
computation process maintains an overall map of the pop-
ulation and its respective fitness values. When the evolu-
tionary computation process wishes to breed individuals, it
does so by directing multiple remote “slave” processes to ex-
change the individuals and cross them over or mutate them.
The slaves then may assess the fitness values of the new
children, sending fitness information back to the master so
it may update its central map.

Island Models (or “Demes”). The population is again
broken into multiple subpopulations, each subpopulation re-
siding on a different process. However, there is no master
per se. Instead, each process maintains its own indepen-
dent evolutionary loop, selecting, breeding, and evaluating
individuals from its own subpopulation. Occasionally copies
of individuals from one subpopulation will “migrate” to an-
other subpopulation over the network. Island models may
operate at various levels of synchrony: for example, after an
island receives migrants, it may wait to incorporate them
into its population at its leisure (or decide not to).

Fine-Grained (or “Cellular”) Models. Here the popula-
tion is distributed among many processes (often one proces-
sor per individual) which collectively take part in a shared
evolutionary process. Each process is responsible for updat-
ing its individuals through selecting individuals from other
processes, performing crossover and mutation, and evalu-
ating the resulting children. Processes are often, but not
always, organized spatially and selection prefers individuals
of neighboring processes.

Some of these techniques are orthogonal and may be com-
posed in various ways: for example, each process in an is-
land model may act as a master in a distributed evaluation
scheme, with its own set of evaluation slaves.

Because we are concerned with communications overhead,
it is important to note the communications characteristics
typical of these methods. Fine-grained models generally as-
sumes a very high degree of communications fabric, such as
a vector processor system or shared memory system, and so
are not as relevant as the other methods. Distributed evalu-
ation and directed breeding/evaluation techniques typically
require transfer of all individuals in the population to and
from various slaves, either to form a new population, or to
evaluate its individuals. Such an approach is thus appropri-
ate when evaluation or breeding costs are sufficiently large
to justify the communications overhead (see [5], p. 36). On
the contrary, island models are adept at utilizing a large
gamut of of communication speed and bandwidth: it sim-
ply determines the rate at which individuals may migrate
throughout the joint population. At the extreme, with no
communication, island models simply approximate indepen-
dent evolutionary runs. Last, and importantly, all of the
above methods, except for distributed evaluation, presume
that the slaves can communicate with one another. There
are ways to work around this: for example, island models
may transfer individuals to one another by communicating
solely through a central “master” acting as an intermediary:
but this can be very costly depending on the network fabric.

One particular variation bears relationships with our tech-
nique. So-called “memetic” algorithms augment the evolu-
tionary loop by performing local optimization on individu-
als during their fitness evaluation. Memetic algorithms have
been used with synchronous and asynchronous island mod-
els [2, 14, 3] and with directed breeding/evaluation [6]. But
since the additional cost of a memetic algorithm lies in its
easily distributable local search procedure during an indi-
vidual’s evaluation, performing distributed evaluation would
seem a natural fit. If this local search took the form of hill-
climbing, a memetic algorithm would approximate an OE
technique with a remote population of size one or two.

2.1 ECJ and Distributed Evaluation
ECJ [9] is a Java-based evolutionary computation toolkit

developed at George Mason University, and provides for var-
ious approaches to parallelization: island models, multiple
threads for evaluation or breeding, and distributed evalua-
tion over many remote processors. It is this third mechanism
which is the focus of this paper.

Generational Distributed Evaluation. In the distributed
(or “master-slave”) evaluation model, a central evolutionary
computation process (the master) farms out evaluations of
individuals to parallel slave processes. This is a straightfor-
ward method for handling parallel generational evolutionary
runs, and is Algorithm A in Grefenstette’s 1981 report [7].

A naive approach to distributed evaluation simply cuts
the population into N sections and sends each section to a
different slave. ECJ adopts a somewhat more flexible proce-
dure: the population is broken into groups and each group
is submitted to a queue. When a slave is available, it re-
quests the next group from the queue and begins processing
the individuals in the group. When a slave has completed
evaluating all the individuals in a group, it is assigned a



new group from the queue if there are any left. If a slave
goes offline, its currently-assigned group is placed back in
the queue. New slaves may come online at any time: they
are simply given the next group to perform.

Asynchronous Evolution: Steady-State Distributed
Evaluation. Here, when a slave comes available, individu-
als are bred or created and submitted as a group to the slave.
When a slave has completed its evaluation, the returned in-
dividuals are inserted into the population, displacing some
existing individuals. This model is not often implemented,
but has been described in the past [11] and was one of the
original four algorithms (Algorithm B) in [7]. Asynchronous
evolution tolerates very wide variance in evaluation time: if
a group, for whatever reason, takes a long time to process,
it simply doesn’t get to participate in the evolutionary cycle
until it is finished.

Asynchronous evolution in ECJ has two stages: popula-
tion initialization and population steady-state. During ini-
tialization individuals are created at random and handed
(as groups) to the slaves; and when slaves return individ-
uals, they are added to the population until it has grown
to full size. Once the population has reached full size, the
system switches to steady-state mode. Now slaves receive
groups of individuals newly bred from the population; and
an individual completed by a slave is added to the popula-
tion, replacing an existing individual.

3. FRONTIER AND ORIGIN
The FrontierR© Grid Platform is a commercial grid com-

puting platform developed by Parabon Computation, Inc.
It enables applications launched from an ordinary desktop-
class computer to harness the idle computational capacity of
thousands of computers. The platform is comprised of three
main components: The Frontier Compute Engine is a desk-
top application that utilizes the idle computational power
of an Internet-connected machine to process small units of
computational work called tasks. The Client Application,
executed from a single computer, is a domain specific ap-
plication configured to execute compute-intensive jobs on
many compute engines. The Frontier Server is the central
hub of the Frontier platform. It communicates with the
client application and multiple compute engines. It coor-
dinates the scheduling and distribution of tasks; maintains
records identifying all compute engines, client sessions, and
tasks; and ensures the platform’s consistency and reliability.
Communication with the client application occurs within
the context of a session, during which jobs can be launched,
monitored, and terminated.

Jobs and Tasks. Computational work to be performed on
Frontier is grouped into a single, relatively isolated unit
called a job. Within a job, work is divided into an arbi-
trary set of individual tasks, with each task being executed
independently on a single compute engine. Tasks running
on Frontier have the following characteristics:

• Tasks cannot communicate with other running tasks.

• All communication to a task takes place at the instan-
tiation of the task.

• All communication from a task (e.g., reporting results)
occurs in the form of periodic and final status reports.

Frontier jobs must be divided into a set of relatively small
tasks, each of which is independently executed on an engine
before reporting its final results. The results of these tasks
are then gathered by the client application and assembled
like pieces of a puzzle to form a coherent whole. This re-
quires that the amount of work a task performs be small
enough both to be processed effectively given the resources
(i.e., memory, disk storage, etc.) available to a compute
engine and to return a final result within a relatively short
time—generally, a few minutes to a few hours.

Further, as Internet communication is inherently high-
latency, the time required for a round trip between tasks
running on two different nodes can be quite long—often on
the order of several seconds and possibly as long as minutes.
Thus, frequent communication between tasks is not feasible.
Though inter-task communication may be more feasible in
the future, this functionality is not supported in the current
version of Frontier.

High Compute-to-Data Ratio. The individual machines
that provide Frontier’s computational power may have mod-
est bandwidth connections to the Frontier server. Further,
the central server must communicate with many of these
nodes simultaneously, meaning that communications band-
width on the server side is at a premium as well. This means
that sending large amounts of data to nodes and returning
large results can take significant amounts of time.

However, after a task’s data has been sent to a node
and before its results are sent back, the compute engine
can efficiently crunch away on a task for minutes or hours.
Thus, tasks run most efficiently if they have large amounts of
computation to perform and relatively small pieces of data
required and results to report. This is known as a high
compute-to-data ratio.

A task with a very high compute-to-data ratio is compute-
limited and tends to scale and run as well on Frontier as on
a traditional cluster of machines. On the other hand, a task
with a very low compute-to-data ratio is bandwidth-limited
and spends most of its time transferring data back and forth
to and from the server. A job comprised of entirely such
tasks could, take longer to complete on Frontier than on a
single machine.

Origin. The OriginTM Evolutionary SDK (software devel-
opment kit), also developed by Parabon, enables ECJ ap-
plications to run on Frontier with little or no modification.
Together, ECJ, Origin and Frontier provide a convenient
means for performing evolutionary computation on large-
scale computational grids.

4. OPPORTUNISTIC EVOLUTION
Our approach is motivated by the high communications

costs involved in massive distributed grids, and in overcom-
ing certain constraints placed on those grids to enable them
to run sufficiently securely. In a grid computing application
using the background CPU cycles of PCs in large organi-
zations, communication between processes on different ma-
chines is generally forbidden given the security concerns of
running jobs on unprotected machines behind organizational
firewalls. Furthermore, communication between processes in
different organizations may be impossible due to firewall pro-
tections for each organization. These constraints on inter-



process communication generally rule out island models and
related parallel techniques. Instead two other options are in-
tuitive: running an independent evolutionary computation
job on each process; and using processes to distribute the
evaluation tasks, breeding tasks, etc.

We have chosen to distribute evaluation tasks on the grid.
The primary difficulty in doing so is the communication and
setup costs. There is a significant overhead involved in shut-
tling individuals to the remote slave, constructing the eval-
uation environment, and returning either the individuals or
their fitness values after evaluation. There is also an abso-
lute bandwidth cap on the number of individuals that the
master can send to the slaves over the network fabric.

If an evaluation process were sufficiently long, it might jus-
tify the cost of shuttling the individual to the remote slave,
processing it, and returning the individual (or its fitness)
back to the master. But how long is long? For a large dis-
tributed grid spread over the internet, communications costs
are surprisingly high: we have found that evaluations might
need to run for as much as a minute to make effective use of
the system. On a more local distributed environment such
as a beowulf cluster, these costs are much lower, but they
are still significant. Thus while optimization tasks involv-
ing “slow” evaluations (multiagent ‘models, robotics simu-
lations, etc.) are good targets for distributed evaluation,
“fast” evaluations cannot take advantage of the distributed
resources sufficiently efficiently.

Instead of performing longer evaluations, we have instead
chosen to perform more of them. Opportunistic evolution
augments our distributed evaluation (asynchronous steady
state or generational) by performing mini-evolution pro-
cesses on the remote slaves. We first construct a slave with a
maximum wall-clock time more than sufficient to justify the
setup costs of the slave. We then send to the remote slave
a job with as many individuals as is reasonable. The slave
then evaluates its job. If a slave’s wall-clock time has been
exceeded, it immediately returns its job. Otherwise, treat-
ing the evaluated individuals as an initial population, the
slave enters into its own evolutionary loop, selecting par-
ents, breeding new children, evaluating the children, and
reintroducing them to the population. When the wall clock
time has been exceeded, the current population is returned
in lieu of the original individuals. The evolutionary loop
details are up to the experimenter.

We know of one paper from the literature which has imple-
mented opportunistic evolution in the past [1], and although
it is an early and important one, it is typically mis-cited as
describing ordinary Master/Slave evolution. In that paper,
the number of mini-“generations” on each slave was fixed (to
10), whereas in our case the number varies, being restricted
by wall-clock time.

5. PRELIMINARY EXPERIMENTS
We have begun experimenting with OE. To keep things

simple, our initial experiments have compared the perfor-
mance of generational OE against generational “master-
slave” distributed evaluation; we did not apply asyn-
chronous evolution so as to eliminate the uncontrolled factor
of variance in evaluation time, particularly with regard to
genetic programming problems. We also have chosen to run
OE in a controlled environment, namely a compute cluster
with a fixed number of nodes.

We compared OE and master-slave evaluation by running
each for 5 minutes of wall-clock time and comparing perfor-
mance results. OE slaves continued to perform evolution for
a fixed amount of time: thus OE’s total number of genera-
tions on the “master” was expected to be much lower than
distributed master-slave evaluation. We chose two stan-
dard genetic programming problems and two vector prob-
lems common to genetic algorithms or evolution strategies.
Our two genetic programming problems are the 10-bit Even
Parity and Artificial Ant problems. A solution to the 10-bit
Even Parity problem discovers a genetic programming tree
function of 10 inputs which outputs whether or not there is
an even number of 1-bits among the inputs. A solution to
the Artificial Ant problem is a GP tree which, when exe-
cuted, directs an ant to eat as many pellets as possible in
in a grid world. We used the well-known Santa Fe trail,
which contains 89 pieces of food. The formal description of
both problems may be found in [8]. Genetic programming
experiments employed 50 compute nodes.

The vector problems are Rastrigin and Hierarchical If-
And-Only-If. The Rastrigin problem tries to minimize the
function f(x) = 10n +

Pn
i=1

`
x2

i − 10 cos(2πxi)
´

using a
fixed-length vector of n real values, each −5.12 ≤ xi ≤ 5.12.
The Rastrigin function has many local minima, and the
global optima is at the origin with a value f(x) = 0. For
our experiments, we chose n = 500, and used 30 compute
nodes.

The Hierarchical If-And-Only-If (H-IFF) problem [16] has
multiple local optima and two global optima. Using a bit
representation, H-IFF groups bits into blocks, then combines
these blocks into larger blocks, forming a hierarchy of blocks.
Assuming n = 2k, as you move up the hierarchy, the number
of of blocks halve and the size of the blocks double. The H-
IFF problems tries to maximize the function:

f(B) =

8><>:
1 |B| = 1

|B|+ f(BL) + f(BR) ∀i, bi = 1 or ∀i, bi = 0

f(BL) + f(BR) otherwise

where B is a block of bits, {b1, b2, . . . , bn}, |B| is the size
of the block, and BL and BR are the left and right halves
of B. From this fitness function, its clear that a string of
all ones or all zeros has maximum fitness. Minimum fitness
occurs with a string of alternating zeros and ones. This
formulation generates blocks which are not separable, unlike
similar problems e.g, Royal Roads [10]. For our experiments,
we chose n = 210 = 1024, and used 20 compute nodes.

Experiments consisted of 50 independent runs. The 10-bit
parity problem used a population of 5000, the Artificial Ant
problem used a population size of 1000, while the Rastrigin
function used a population size of 3000 and the H-IFF prob-
lem used 2000. All problems used a chunk-size of 100. In
the Artificial Ant problem, the ant is limited to 400 moves.
For all problems, OE was given a one second slave-evolution
wall clock time limit, which resulted in approximately 16
generations on each slave for 10-Bit Parity, approximately
124 generations on Artificial Ant, approximately 214 gen-
erations on H-IFF, and approximately 150 generations on
Rastrigin. Due to the varying number of generations com-
pleted per run, in all the figures we report maximal best-so-
far curves, i.e, for short runs, we pad the data to match the
largest number of generations completed for that problem.
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Figure 1: Best-so-far curves for the Artificial Ant
experiments. Lower fitness is better.
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Figure 2: Best-so-far curves for the 10-Bit Parity
experiments. Lower fitness is better.

Results and Discussion. Figure 1 and Figure 2 show the
results on the Artificial Ant and 10-Bit Parity problems re-
spectively. Note that in both problems, individuals change
size during evolution. In both problems OE outperforms tra-
ditional master-slave by a wide margin. This performance
was not consistent, however. Figure 3 shows the best-so-far
curve for the Rastrigin problem, where OE performs worse
than traditional master slave.

The primary advantage of OE is that it is able to stuff in
many more evaluations in the same period of time, because it
is less reliant on network lag.1 The disadvantage is the OE is
aggressively modifying individuals with a form of semi-local
search on the slaves, resulting in much more exploitation
than exploration.2 For some problems, such as artificial ant,
either higher exploitation is desirable, or (more likely) the
significant increase in number evaluations and lower lag is
worth the cost in additional exploitation.

For what kinds of problems might OE be a good

1
This advantage is lessened when individuals are sufficiently large,

since OE must both send and return individuals over the network,
while master-slave need only send individuals and return fitnesses.
2
This is same basic disadvantage may exist for memetic algorithms.
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Figure 3: Best-so-far curves for the Rastrigin exper-
iments. Higher fitness is better.
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Figure 4: Best-so-far curves for the H-IFF experi-
ments. Higher fitness is better.

pick? We think it may not simply be an issue of explo-
ration/exploitation tradeoff: in informal experiments we in-
creased the mutation rate on the slaves, but the results
remained the same. Rather, recent work has shown that
breaking a population into smaller evolutionary chunks may
be evolutionarily advantageous to so-called compositional
problems [15], where full solutions consist of subsolutions
which may be discovered independently, at least in part.
Compositional problems have been shown to be specifically
amenable to island models [13], and are also a natural fit for
coevolutionary techniques. Likewise, as OE is essentially
setting up small temporary islands, we believe that compo-
sitional problems might be helpful here as well.

To test this, we compared OE with master-slave using the
H-IFF function, a strongly compositional problem. Figure 4
shows the best-so-far curves for the H-IFF problems: here,
OE wins readily.



6. CONCLUSIONS AND FUTURE WORK
This paper introduced opportunistic evolution (OE), a

new parallel evolutionary algorithm designed for large scale
grid computing systems. OE distributes groups of individ-
uals to remote slave nodes to be evaluated, and given time
it performs small evolutionary loops on those slave nodes
before returning them to the master. OE is designed to be
robust in the face of high communications and initialization
costs and wide variance in evaluation resources found in such
systems. OE’s development was motivated by the demands
of Origin, a hosting of the ECJ evolutionary computation
toolkit on the Frontier massive grid computing framework.
We identified advantages and disadvantages of OE, and dis-
covered examples of OE outperforming traditional master-
slave models (and vice versa).

Our initial results suggest avenues for future work. We
plan to examine more problem domains to better understand
the types of problems on which OE will perform well, and
how OE compares to island models. In addition, we plan to
examine different evolutionary algorithms on the slaves and
the master, and the effects of various parameters (mutation
rate, number of individuals sent to the slaves, etc.). Last,
we are interested in the scalability of OE, especially using
genetic programming to evolve support vector machines.
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