
Large Scale Empirical Analysis of Cooperative Coevolution

Sean Luke
Department of Computer Science

George Mason University
sean@cs.gmu.edu

Keith Sullivan
Department of Computer Science

George Mason University
ksulliv1@cs.gmu.edu

Faisal Abidi
Department of Computer Science

George Mason University
fabidi@gmu.edu

ABSTRACT
We present a study of cooperative coevolution applied to mod-
erately complex optimization problems in large-population
environments. The study asks three questions. First: what
collaboration methods perform best, and when? Second:
how many subpopulations are desirable? Third: is it worth-
while to do more than one trial per fitness evaluation? We
discovered that parallel methods tended to work better than
sequential ones, that “shuffling” (a collaboration method) pre-
dominated in performance in more complex problems, that
more subpopulations generally did better, and that more
trials performed marginally better.

Categories and Subject Descriptors
I.2.m [Artificial Intelligence]: Miscellaneous—Evolution-
ary Computation

General Terms
Algorithms, Experimentation

Keywords
Coevolution

1. INTRODUCTION
Cooperative coevolution is an evolutionary algorithm

framework which breaks a population into several subpopu-
lations, each optimizing a sub-part of the complete solution.
Individuals are tested in trials by grouping them with col-
laborators from each of the other subpopulations to form a
complete candidate solution, which is then assessed. The
fitness of the individual is then evaluated, often involving
the maximum over its trials. The promise of cooperative
coevolution is that it can take advantage of problems which
are partially decomposable, that is, breakable into separate
subproblems which can be somewhat, though not entirely,
optimized independently due to low linkage between variables
across subproblem boundaries.

Cooperative coevolution entails many parameters beyond
those common to evolutionary computation. This study fo-
cuses on four critical ones: (1) What update timing should
be applied? In sequential update timing, only one subpopu-
lation is assessed and bred per generation; in parallel update

Copyright is held by the author/owner(s).
GECCO 2011 2011 Dublin, Ireland
ACM 978-1-4503-0690-4/11/07.

Problem Description Bounds for xi

Sum
∑n

i=1 xi [−5.12, 5.12]
Median median(x1, ..., xn) [−5.12, 5.12]

Min min(x1, ..., xn) [−5.12, 5.12]
Rastrigin* 10n

∑n
i=1 x

2
i − 10 cos(2πxi) [−5.12, 5.12]

Schwefel*
∑n

i=1−xi sin
(√
|xi|

)
[−512.03, 511.97]

Rosenbrock*
∑n−1

i=1 (1− xi)
2 + 100(xi+1 − x2

i)
2 [−2.048, 2.048]

Rot. Rastrigin* Rastrigin(rotate(x1, ..., xn)) [−5.12, 5.12]
Rot. Schwefel* Schwefel(rotate(x1, ..., xn)) [−512.03, 511.97]

Table 1: Test problems. * indicates minimization.

timing, subpopulations are assessed and bred simultaneously.
(2) What collaboration scheme should be used? This is the
procedure by which collaborators are gathered together to
perform trials. (3) How many subpopulations should be used,
assuming the number is not constrained by the problem? (4)
Is it worthwhile to base fitness on more than a single trial
per individual? We test these parameters against several
problems of varying complexity, all with a moderately large
genome size (100), with large numbers of trials (one million
per run), and with large populations (1000).

This paper is a summary of a fuller technical report [1].

2. EXPERIMENTS
We used a large population: p = 1000 individuals, divided

into s = 1, 2, 4, 10, 50, and 100 subpopulations to perform
coevolution. All problems had n = 100 variables. Individuals
in each subpopulation thus had genome lengths of n/s.

We tested using both parallel and sequential update timing.
Parallel update timing runs lasted for g = 1000 generations,
except in “shuffling” as discussed next. Sequential update
timing runs lasted for g × s generations. We compared eight
collaboration schemes, based on the following three criteria:

• Individuals were tested with the single best collabora-
tors of the prior generation from other subpopulations.

• Individuals were tested with collaborators chosen at
random, with replacement, from the current individuals
of other subpopulations.

• Individuals in each subpopulation were randomly shuf-
fled, then paired off. If the update timing was parallel,
one shuffling would result in p/s total trials: the surplus
in trials could be redistributed using larger subpopula-
tion sizes (p individuals each), more generations (g× s
generations), or more shuffled trials (s per individual).

This yielded eight combinations of update timing and col-
laboration: Sequential Single Best (SB), Sequential Random
(SR), Sequential Shuffled (SS), Parallel Single Best (PB),

Problem Number of Subpopulations
2 4 10 50 100

Sum SB PB SB PB PB SB SB PB PP PG PB SB PP PG
Median PB SB PP SB PB SB PB (all) (all)

Min PP PG PG PP PG PG PG
Rosenbrock PP PP PP PP PP

Rastrigin PP PP PP PP PP
Schwefel PP PP PP PP PP

Rot. Rastrigin PP PP PP PP PP
Rot. Schwefel PT PR PG* PG PG PG PG

Table 2: First Experiment. Shown are the best-
performing schemes without statistically significant
differences. Note * where PR and SB are not signif-
icantly different; and also PG, SB, PP, and PB.

Problem Collaboration Scheme Subpopulations
Sum Sequential Single Best 2 4 10 50 100

Median Sequential Single Best 2 4 10 50 100
Min Parallel Shuffled Gens 2 4 100 50 10

Rosenbrock Parallel Shuffled Pops 2 4 10 50 100
Rastrigin Parallel Shuffled Pops 2 4 10 50 100
Schwefel Parallel Shuffled Pops 2 4 10 50 100

Rot. Rastrigin Parallel Shuffled Pops 2 4 10 50 100
Rot. Schwefel Parallel Shuffled Gens 2 4 10 100 50

Table 3: Second Experiment. Subpopulations are or-
dered in increasing performance. Overbars indicate
statistically insignificant differences.

Parallel Random (PR), Parallel Shuffled Pops (PP), Parallel
Shuffled Gens (PG), and Parallel Shuffled Trials (PT).

We tested against the eight test problems in Table 1. Some
problems were rotated, using a random orthonormal basis.

Breeding used tournament selection (of size 2), then one-
point crossover, then gaussian mutation (σ = 0.01), rese-
lecting mutation until the new gene was within valid gene
boundaries. We ran each experiment for 100 independent
runs, and used one-way ANOVAs each set to p = 0.00025 in
order to retain slightly better than p = 0.05 for the paper as
a whole. Experiments were performed using the ECJ library.

First Experiment: Collaboration Scheme Choice. We
began by comparing the eight collaboration schemes in the
context of all combinations of problem type and number
of subpopulations (including 1: a standard GA). We asked:
which collaboration schemes worked best and in which situa-
tions? Abridged results are summarized in Table 2. We had
hypothesized that single-best strategies would work well for
simple, linearly separable problems, but less well for others.
In fact this is what occurred: Parallel Single Best and Se-
quential Single Best had the best results for the two easiest
problems (Sum and Median), but did not impress elsewhere.

Parallel Shuffled Pops and Parallel Shuffled Gens domi-
nated the other problems. The one exception was Schwefel at
2 subpopulations, where Parallel Shuffled Trials and Parallel
Random performed best. In nearly all problems, the baseline
(1-population) GA was middling. Sequential Shuffled and Se-
quential Random were poor performers. Never did sequential
schemes statistically significantly outperform parallel ones.

Second Experiment: Number of Subpopulations. We
then compared across different numbers of subpopulations.
We hypothesized that as the number of subpopulations grew,
cooperative coevolution would perform well on separable
problems but not high-linkage ones (such as rotated ones).

Problem Collaboration Number of Subpopulations
Scheme 2 4 10 50 100

Sum PB PB PB PB PB PB
Median PB PB PB PB PB PB 2G

Min PG PG 2P PG 2P PG 2G 2G
Rosenbrock PP PP 2G 2G PP 2G 2G 2G

Rastrigin PP PP 2G 2G PP 2G 2G 2G
Schwefel PP PP PP PP PP 2G PP 2G

Rot. Rastrigin PP 2G PP 2G 2G 2G 2G
Rot. Schwefel PG 2G 2P* 2P PG 2P PG PG 2P 2G 2P 2G PG

Table 4: Third Experiment. Shown are the best-
performing schemes without statistically significant
differences. Note * where 2P and PG are not signif-
icantly different.

The results were very surprising. As the number of sub-
populations increased, the performance order of the collab-
oration schemes stayed roughly the same, but the variance
increased. The poorer-performing collaboration schemes gen-
erally performed much worse, while the highest-performing
collaboration schemes consistently performed even better.
Table 3 summarizes the results using the highest-performing
collaboration schemes, illustrating part of this phenomenon.

Third Experiment: Extra Trials. The prevailing wisdom
regarding cooperative coevolution is that it may be worth-
while to perform multiple trials to compute a fitness eval-
uation, because individuals are evaluated in the context of
other individuals who may or may not prove to be worthwhile
collaborators. To test this prevailing wisdom, we selected the
best collaboration method for each problem. These methods
originally used one trial. We then built two-trial variations of
the methods and compared them to the originals. For each
variation, we tried both halving the subpopulation size and
halving the total number of generations. In Table 4 these
are referred to as the “2P” and “2G” subvariations.

For Sum and Median, we selected Parallel Single Best,
and compared it against a variation where an individual
is tested against the single best collaborators and also
against randomly-chosen collaborators (the so-called “CCEA-
2” method). For Min and Rotated Schwefel, we chose Parallel
Shuffled Gens, and compared it against a variation where two
randomly shuffled trials were performed. For the remaining
problems we chose Parallel Shuffled Pops, again compared
against a variation with two randomly shuffled trials.

Table 4 shows the results. We expected that for easily
separable problems (such as Sum or Median) more trials
would provide no benefit: and this was the case. Interestingly,
for Schwefel and Rotated Schwefel more trials weren’t useful
either. For the other problems, it was useful to have more
trials with more subpopulations. This made sense, as more
subpopulations meant more collaborators to add contextual
noise to the fitness evaluation. Even so, the improvements
were rarely large. It was always as good or better to halve
the generations rather than the population size.

3. ACKNOWLEDGMENT
This research was supported by NSF Grant 0916870.

4. REFERENCES
[1] S. Luke, K. Sullivan, and F. Abidi. Large scale empirical

analysis of cooperative coevolution. Technical Report
GMU-CS-TR-2011-2, Dept. Computer Science, George
Mason University, 2011. Available at http://cs.gmu.edu.

