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ABSTRACT

In this position paper we argue that there may yet be more to
squeeze out of MIDI 1.0 before adopting MIDI 2.0 whole-
sale. As MIDI 2.0 has been slow to roll out, it is worthwhile
considering what kinds of backward-compatible improve-
ments could be made to MIDI 1.0 as a stopgap to address
some of the issues which drove MIDI 2.0 in the first place.
In this paper we provide examples of six major improve-
ments that could be made, as a proof of concept and straw-
man argument.

1. INTRODUCTION

In 1981 Ikutaro Kakehashi contacted Tom Oberheim, sug-
gesting an international communication standard for music
synthesizers, and Oberheim then recommended that Dave
Smith be included in the informal discussion group. Smith’s
resulting proposal, called the Universal Synthesizer Inter-
face, or USI, was first discussed at the Gakki Fair in 1981,
and then after feedback from Japanese manufacturers it was
presented at the following AES Conference [1]. After a
few more iterations, Smith renamed the protocol MIDI and
presented it at the NAMM show in 1982. Initial resistance
from manufacturers was eventually won over, and MIDI be-
came the de facto standard for control of electronic musical
instruments [2].

That was over 40 years ago. MIDI has been very suc-
cessful, and its weaknesses are also now well understood.
In 2020 the MIDI Manufacturer’s Association (MMA) for-
mally adopted MIDI 2.0, a collection of six documents
totaling 349 pages representing a major collaborative ef-
fort to update MIDI 1.0 for the modern age [3]. MIDI 2.0
tries to address most of MIDI 1.0’s major problems and to
provide room to grow.

MIDI 2.0 has been slow to roll out. Operating systems
have only recently introduced MIDI 2.0 drivers despite
likely having had significant runway prior to the 2020 an-
nouncement. Our private discussion with some major hard-
ware manufacturers has not revealed enthusiasm for the pro-
tocol. Relatively few products have to date adopted MIDI
2.0, and almost no hardware devices have done so. This
has been blamed on industry slowness due to the COVID
pause, or the time needed to build drivers or software, and
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this may in fact be so. We have been assured by a member
of the MIDI 2.0 committee that 2024 will be 2.0’s Annus
Mirabilis, and in truth we very much hope that it is!

However, it also may not be. We suspect that the chief
cause of MIDI 2.0’s slow adoption to date is simply that it
is large and complex. And so we have explored what might
be done in the interim. If MIDI 2.0 requires further revi-
sions, what might be used as a stopgap measure? If small
hardware manufacturers or users reject it for its complexity,
what might be provided instead, to smooth the ramp until
adoption?

Thus this position paper poses the question: what would
a MIDI 1.5 look like? Are there improvements that we can
still add to MIDI 1.0 which would be backward compatible
and yet provide some of the features long sought after by
MIDI 1.0 critics?

Though what follows might look like a specification pro-
posal, it is in fact simply a strawman exercise, meant to
show that many improvements could be made to MIDI 1.0
without jumping to the full features, and complexity, of
MIDI 2.0, and to suggest that it might be worthwhile con-
sidering a stopgap measure if MIDI 2.0 needs time to live
up to its promise.

1.1 Previous Work

1.1.1 Previous extensions and alternatives

While MIDI 1.0 never changed its version number prior
to 2.0, it has had a great many revisions, and presently
stands at Version 4.2 [4]. There have been many proposed
extensions to, transports for, and alternatives to MIDI 1.0
for notation, song organization, performance, and music
analysis: we refer the reader to Beyond MIDI [5] for a good
summary of many proposals up to 1997 alone. Probably
the most important alternative to MIDI 1.0 as a communica-
tions protocol has been Open Sound Control (or OSC) [6],
which defines a full graph topology much like MIDI 2.0,
albeit with an emphasis on portable and human-readable
addressing and communication.

1.1.2 Previous Use of Reserved MIDI Status Bytes

Some of the solutions we propose use reserved MIDI status
bytes. There were no doubt many previous proposals to
use the four reserved status bytes, though perhaps not in
response to MIDI 2.0! Here are two, both concerning the
System Real-time message F9.

In 2016 Michael Lauter published an online whitepaper
entitled “The case for MIDI real-time MARK message
F9h” [7]. In it he argued that F9 could be used to mark the
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start of a new measure or musical phrase to make it easier
to sync disparate devices.

The second is more curious. F9 has been incorrectly used
as a MIDI Tick message to be emitted every 10 milliseconds
to allow for a simple form of absolute time sync. This
nonstandard usage has spread to various applications due
to its inclusion in the standard Arduino MIDI library [8].
It is not clear what the origin of this usage was, but the
earliest reference we can find appears to be from a MIDI
fan website [9].

We have been informed that the MIDI 2.0 Committee also
considered using status bytes early on, among many options,
but rejected them. Among the chief reasons for rejection
was the discovery that there existed hardware interfaces
in the field, or operating system drivers or libraries, that
did not behave properly when confronted with unexpected
use of the reserved status bytes. Ultimately the committee
chose to develop an entirely new protocol.

We find this argument unpersuasive. It is essentially say-
ing that, because some nonconforming interfaces and soft-
ware would need to be revised to work properly with Proto-
col A, we should abandon it and move to Protocol B, where
all of them would need to be not only revised but redesigned
from scratch. There are many compelling reasons to move
to a better protocol: but we think this is not one of them.

We do note that a few specifications external to MIDI
proper, such as MIDI RTP [10], have over the years improp-
erly banned reserved status bytes rather than reserved them,
and so might require revision.

2. MIDI 1.0 DESIDERATA

MIDI’s failings are well known. Here are a few.

MIDI is Slow MIDI is a serial spec that runs at 31250 BPS,
including a start and stop bit. This was chosen carefully: it
is exactly 1/32 of 1MHz. In fact, originally it was to run at
19200 BPS until revised after suggestions from Japanese
manufacturers [2]. It was thought that 31250 would be fast
enough to “prevent objectionable delays between equip-
ment” [11, p.7].

Parameter and Value Resolution are Poor MIDI pitch,
velocity, and aftertouch resolution are only 7-bit: though
the MIDI Tuning Standard allows for pitch changes with
100/214 cents resolution. The value and parameter resolu-
tion of MIDI CC are both only 7-bit, and much of the CC
parameter space is used up by official conventions and stan-
dards. One alternative route, 14-bit CC, increases, both the
value space but dramatically reduces the parameter space.
Another solution, RPN/NRPN, increases the value and pa-
rameter spaces to 14 bit, but is slower.

MIDI has Namespace and Polyphony Problems MIDI has
a single namespace, namely its 16 channels, which is very
limited from a modern perspective. This is remediated to
some degree in software by increasing the number of MIDI
ports or devices, each with its own set of 16 channels, but
this is a poor fix. To make matters much worse, MIDI
channels are not fully polyphonic, notably in per-note pa-

rameters and pitch bend. MPE was proposed to fix this, but
its approach (usually making each channel a monophonic
voice) means that MPE synthesizers can respond properly
to at most 15 notes per MPE Zone, and there can be at most
two of them, dividing those 15 notes amongst themselves.
Furthermore in doing so this radically eats into the channel
space allotted to other synthesizers.

Limited Discovery and Capability Inquiry MIDI only has
a primitive discovery mechanism. Via system exclusive,
devices can inform us that they exist but not what protocols
they can respond to.

Patch Transfer is Undefined MIDI never defined how to
transfer patches or update fined-grained patch data out-
side of CC or NRPN. Manufacturers, left to their own de-
vices, have constructed a zoo of incompatible, buggy, and
often profoundly ill-conceived patch transfer or revision
schemes [12].

MIDI is Unidirectional MIDI was designed for a single
device to send messages to multiple downstream devices. It
was not meant for devices to communicate with one another
in an arbitrary graph topology.

2.0.1 A Few Solutions

We are not so grandiose as to suggest that solutions to all
these problems can be found with small modifications to
MIDI 1.0. Certainly speed, for example, cannot be im-
proved in general as MIDI 1.0 on serial hardware is fixed
to 31250 BPS. However a number of improvements can
be made while retaining backward compatibility with prop-
erly conforming devices. We refer to these improvements
colloquially as MIDI 1.5.

MIDI 2.0 is also touted as backward compatible with
MIDI 1.0: but only in the very weak sense that if the older
device appears to not understand it, one could always revert
to 1.0 instead. It cannot intermesh with properly conform-
ing 1.0 devices. We think it is better placed in the “clean
break” category along with approaches such as Open Sound
Control [6].

How might we make MIDI 1.5 backward compatible with
1.0? First off, 1.0 has two options for official extension,
Registered Parameter Numbers (RPN) and Universal Sys-
tem Exclusive messages. Less well known is that MIDI 1.0
also has four status bytes still not in use. Two of these status
bytes (F9 and FD) are System Real-time messages and so
are generally expected to be only one byte in length. The
other two (F4 and F5) are System Common messages and
do not have defined lengths. These status bytes could be
defined for our purposes.

In this paper we outline six ways in which we could
improve some of these issues while staying backward-
compatible with MIDI 1.0, by using Universal System Ex-
clusive and RPN messages and certain reserved status bytes.
They are:

Discovery Given a bidirectional channel, we can deter-
mine if downstream devices are MIDI 1.5-Ready.



Sectors These are roughly analogous to MIDI 2.0’s
groups. This scheme extends MIDI’s channels to 2048.

MPE Improvements We employ Sectors to extend MPE
instruments to have more than 15 notes and more than two
MPE zones.

Ports This scheme can be used instead of, or in addition
to, CC or NRPN. Compared to NRPN, Ports have more
parameters and often faster speed. Ports also fix NRPN’s
lack of atomicity, a major failing.

Patch Transfer We can use MIDI 2.0 Capability Inquiry
(CI) to query devices for capabilities and parameters, and
update the same, as is uses System Exclusive. But MIDI
2.0 CI is heavyweight, and so we also propose a basic patch
dump standard.

Pitch Resolution We could improve the per-note pitch
resolution with a CC.

3. DISCOVERY

We begin with methods to determine if a downstream device
exists and is MIDI 1.5 Ready.

A few preliminaries. First, it has been said that MIDI 1.0
is unidirectional. But that is not really true! Bidirectionality
just requires two MIDI cables. The fundamental distinction
is that in MIDI 1.0, a device may not be the recipient of
messages from two different senders (absent MIDI Merge).
However MIDI 1.0 is perfectly capable of device discovery
and capability inquiry if two cables or virtual devices are
used. We presume bidirectionality for MIDI 1.5 Discovery,
and later for Capability Inquiry and the Patch Dump stan-
dard (Section 7). However this is not absolutely necessary:
if we only have a unidirectional channel, then we can still
proceed with many MIDI 1.5 capabilities with care.

Second, several MIDI 1.5 messages are System Exclusive
Common messages. These messages have a specific format:
F0 Type DeviceID SubID ... F7. Type is 7E for non-real-time
and 7F for real-time message categories. The DeviceID
is set on the Device itself: all downstream devices have
different DeviceIDs. A DeviceID of 7F means “all devices”.
The SubID is the namespace for each category of System
Exclusive Common messages. MIDI 1.5’s namespace is not
yet defined: we will use the placeholder M1.5 throughout.

3.0.1 MIDI 1.5 Readiness and Tolerance

A MIDI 1.5 Ready device understands MIDI 1.5 and how to
respond to MIDI 1.5 properly. Using MIDI 1.5 Discovery,
we can probe to determine if devices are MIDI 1.5 ready. In
order to take advantage of MIDI 1.5, the endpoint devices
must be MIDI 1.5 Ready.

A MIDI 1.5 Tolerant device is a device which is not MIDI
1.5 Ready, but ignores MIDI 1.5 messages and passes them
through unmodified. In order to use MIDI 1.5 data, all
devices must be at least MIDI 1.5 Tolerant. In particular,
all drivers, interfaces, routers, and other in-between devices
must be MIDI 1.5 Tolerant. MIDI 1.5 uses reserved status
bytes from MIDI 1.0. It does not use any System Real-time

status bytes. Thus it should be transferred to downstream
devices by properly-adhering MIDI 1.0 operating system
drivers, MIDI interfaces and routers, and so on. However
there exist ones which filter out these status bytes, convert
them, or otherwise behave badly when receiving them, and
so will interfere with 1.5 even if the downstream device
is MIDI 1.5 Ready. Thus we may query a downstream
device and have it respond that it is MIDI 1.5 Ready, only
to find that we cannot send 1.5 to it because of non-MIDI
1.5 Tolerant operating system driver.

It’s possible for multiple devices to be on the same MIDI
daisy-chain, and one is MIDI 1.0 (but 1.5 Tolerant) while
another is MIDI 1.5 Ready. This would require that the
MIDI 1.5 Ready device restrict itself to only operate within
the channels available to it.

3.1 Existence Query and Response

We use MIDI System Exclusive (or Sysex) Device Inquiry
to determine if bidirectional communications is working,
and which devices are capable of responding. There may be
more devices listening than are capable of responding. To
send a Sysex Device Inquiry to a specific device, we send
F0 7E DeviceID 06 01 F7.

Ideally (and always if the Device is MIDI 1.5 Ready)
the Device should respond with a Sysex Device Inquiry
Response: F0 7E DeviceID 06 02 Manufacturer (1–3 Bytes)
Device (4 Bytes) SoftwareRevision (4 Bytes) F7. The Device
consists of a 2-byte family code and a 2-byte family member
code. We will use the DeviceID, Manufacturer, and Device
later.

3.2 MIDI 1.5 Declaration and Query

The sender can declare that it is itself MIDI 1.5 Ready by
broadcasting F0 7E 7F M1.5 00 to all devices. Note that the
sender does not itself have a DeviceID, though we could
perhaps adapt 7E as a convention.

We next query a given device as to whether it is MIDI 1.5
Ready or not, with F0 7E DeviceID M1.5 01 F7. If the device
is MIDI 1.5 Ready, it should respond with F0 7E DeviceID
M1.5 00 F7 .

If a device has responded with the Sysex Device Inquiry
Response and a MIDI 1.5 Declaration, then we assume the
following:

• The device exists.

• The device can respond to us.

• The device is MIDI 1.5 Ready: this includes being
able to respond usefully to MPE messages.

If the device has responded with a Sysex Device Inquiry
Response but not a MIDI 1.5 Declaration, then we should
assume that the device is not MIDI 1.5 Ready, though it
may be MIDI 1.5 tolerant and able to respond usefully to
MPE Messages.

If the device has not responded with a Sysex Device In-
quiry Response, then it may not exist, or may or may not
be MIDI 1.5 Ready but is unable to respond to us. We must
tread carefully.



4. SECTORS

Sectors are roughly analogous to MIDI 2.0’s groups. They
effectively extend the number of channels to 2048 and ulti-
mately allow MPE to have more than 15 notes.

There are many reasons to want more than 16 channels.
But one critical one is MPE, which has co-opted MIDI
channels to provide per-voice parameterization. But be-
cause there are only 16 channels, MPE can support at most
15 voices. Furthermore, because MPE uses MIDI channels
in the way it has, they can no longer be used in a multitim-
bral fashion if MPE is applied to all 15 voices.

4.1 Approach

A Sector is a group of 16 channels. There are 128 Sectors in
all. Sectors can be used to provide 2048 individual streams
of multitimbralism, and to support up to 256 MPE devices.
Non-voiced messages are applied to all Sectors. All voiced
messages are interpreted as applying only to the current
Sector.

The current Sector is set with the Sector Declaration, F5
Sector. The default Sector is Sector 0, the “MIDI 1.0 Sec-
tor”. Because there may exist MIDI 1.0 devices listening,
Sectors must be careful to interoperate with them. To do
this, the Sender must know (or suspect) which channels
are being used by MIDI 1.0 devices, and assume that these
channels are always Sector 0 regardless of the Sector decla-
ration.

4.2 Sector and Channel Discovery

A MIDI 1.5 Ready device should respond to a Sector and
Channel Request F0 7E DeviceID M1.5 03 F7 to state which
Sectors and channels it responds to. The response is F0 7E
DeviceID M1.5 02 [Sector Channel MPEInstrumentTag]* F7.
The MPEInstrumentTag is the MPE Instrument Tag of the
given Channel: see Section 5. If MPEInstrumentTag is 7F,
then the Channel has no MPE Instrument assigned, and is a
plain Channel.

4.3 Alternatives

Sector Declarations could be less efficiently done in System
Exclusive as F0 7F 7F M1.5 00 SectorByte.

4.4 Issues

Whereas declaring the channel of a voiced message is 3
bits, changing the Sector requires two bytes. Ideally per-
Sector messages would be grouped together when possible
to require only one Sector change message.

If a MIDI 1.5 Ready receiver has not heard a previous
Sector message (perhaps he started listening late, or noise
corrupted the message), he will apply follow-on messages to
the wrong Sector. This is analogous to similar synchronicity
issues in RPN and NRPN.

4.5 Mapping to MIDI 2.0

MIDI 2.0 introduces 16 groups, each of which may hold 16
channels, for a total of 256 channels. These could map to

the first 16 Sectors. MIDI 2.0 CI also is compatible with
groups, and thus we believe with the first 16 Sectors.

5. MPE IMPROVEMENTS

MPE is a hack that uses channels to enable per-note pa-
rameterization. Unfortunately, in doing so, MPE has three
major limitations. First, it is limited to only fifteen voices.
Second, it is limited to only two MPE instruments (that is,
MPE Zones). Third, use of MPE consumes channels which
could otherwise be usefully used by other devices.

We addressed the third issue with Sectors, discussed in
Section 4. We address the other two here.

Our approach extends MPE Zones to MPE Instruments.
An Instrument is a collection of MPE Zones grouped to-
gether into one voice pool. An MPE Instrument may have
up to 128 voices shared across a number of MPE Zones.
Each MPE Instrument has an MPE Instrument Tag and MPE
Zones are each assigned a tag to indicate that they are part
of a given Instrument. There can be up to 127 Instruments.

Because they use so many channels, realistically if there
are any MPE devices listening, they must either all be, or
none of them must be, MIDI 1.5 Ready. We further would
recommend that MIDI 1.5 Ready devices only use MPE
Low Zones.

5.1 MPE Capability Discovery

A device should respond to a MPE Capability Request to in-
dicate which instruments it has available. The MPE Capabil-
ity Request is F0 7E DeviceID M1.5 05 F7. The device would
respond with F0 7E DeviceID M1.5 04 NumMPEInstruments
[MPEInstrumentTag MaxVoices]* F7. Here, NumMPEInstru-
ments indicates the maximum number of MPE instruments
that may be created for the device. MaxVoices+1 is the
maximum number of voices per instrument. This, com-
bined with the Sector and Channel Request (Section 4.2)
gives us which instruments are meant for which channels.

With or without discovery as useful additional information,
we can proceed to define MPE Zones, per Sector, using the
standard MPE RPN messages.

5.2 Issues

In MIDI 1.0, downstream devices decide on their own chan-
nels, but in MPE it is the sender which decides the structure
and size of the MPE zones available, and the devices are left
to fend for themselves after being told this structure. This
may become more problematic with increasing numbers of
channels, and zones.

6. PORTS

Ports are an attempt to achieve better speed than NRPN in
certain common situations, to provide better parameter and
value resolution than NRPN, and to overcome mistakes in
the RPN/NRPN specification.

What mistakes? Since its inception [11] CC has been
conventionally divided into two regions: 7-bit CC messages
offering a resolution of 128 values, and optional CC mes-
sage pairs offering 14-bits, or a range of 16384 values. In



the second case, a “most significant byte” (MSB) message
is paired with a “least significant byte” (LSB) message. The
number formed would be MSB×128+LSB. For example,
to send a 14-bit value for parameter 2, you’d send the MSB
of the value as CC 2, and the LSB of the value as CC 34.
The MIDI designers felt that it was reasonable for a simple
controller to just send the MSB, and so argued that the LSB
should be thought of as an optional “fine tuning” of the
MSB value. This was accompanied with the following text:

If 128 steps of resolution is sufficient the sec-
ond byte (LSB) of the data value can be omit-
ted. If both the MSB and LSB are sent ini-
tially, a subsequent fine adjustment only re-
quires sending the LSB. The MSB does not
have to be retransmitted. If a subsequent ma-
jor adjustment is necessary the MSB must be
transmitted again. When an MSB is received,
the receiver should set its concept of the LSB
to zero.

This was a mistake. First off, a parameter’s value range
may not be 0–16383, but might more often be, say, 0–194.
Following these instructions, manufacturers would have to
awkwardly “stretch” the 194 range to 16384 so as to allow
a bare MSB to be sent with no LSB. Many chose not to,
and so the MSB would only be (in this example) 0 or 1, and
the LSB would be the dominant factor.

Second and more problematic, imagine if the value is
currently MSB=4, LSB=9. A new MSB=7 arrives. Is an
LSB soon arriving to accompany it? If the controller were
just a 7-bit controller, maybe not. The device is required
to assume, for the interval between an MSB and an LSB,
that the value is MSB×128+0, which is wrong if an LSB is
arriving. 14-bit CC is not atomic.

These were reasonable oversights in the first MIDI draft,
but then they were needlessly inherited in NRPN and RPN.
Some manufacturers (like Sequential!) have abandoned
NRPN “fine tuning” as unworkable, but others have retained
it. Controller and DAW vendors must now offer both “fine”
(LSB-primary) and “coarse” (MSB-primary) versions of
14-bit CC and NRPN.

Atomicity could have been fixed in 14-bit CC and
RPN/NRPN by requiring that after an MSB the value not
be changed until the next LSB appears. But that ship has
sailed. We could have changed it here too, but it would not
be backward-compatible with MIDI 1.0.

6.1 Approach

We introduce 65536 Ports, parameters like RPN/NRPN. A
Port can be set to 16384 values.

Ports provide the full parameter or value in a single mes-
sage, and so they are atomic. There is no notion of “coarse”
versus “fine tuning”, as neither the MSB nor LSB can be
provided by itself. Unlike RPN and NRPN, ports can also
auto-increment the parameter in order to easily perform
dumps of parameter ranges.

Port parameters and values are set with the same message:
F4 Command MSB LSB. If this message is meant to change

the Port parameter, then Command takes the form 00hhc-
ccc, where hh are the high bits of the parameter, added
before the MSB and LSB for a total of 16 bits or 65536
parameters; and cccc is the channel.

If the message changes the Port value, then Command
takes the form 01ppcccc. The MSB and LSB define the
value with 14 bits, thus 16384 values. The cccc is the
channel. The pp state how the value is to be set:

00 Set the value to the given amount.

01 Set the value to the given amount, then increment the
current parameter. 65535 increments to 0 (wrapping
around).

10 Increment the value by the given amount, with a
ceiling at 16383.

11 Decrement the value by the given amount, with a
floor at 0.

6.1.1 Efficiency Comparisons

The worst-case scenario in overhead for setting values in
a Port require also changing the Port parameter each and
every time. This would be a total of 8 bytes. But once a Port
parameter is declared for a given channel, values may be
repeatedly changed in that channel. Normally this would be
4 bytes per change. However if we were to extend running
status to include F4, changing values in a Port would be 3
bytes amortized.

In comparison, the worst case scenario for NRPN is
[Param-MSB Param-LSB Value-MSB Value-LSB]*. This
is 12 bytes. The amortized case for NRPN is [Param-MSB
Param-LSB Value-MSB Value-LSB [Value-MSB/LSB]* ]*.
Assuming running status, and that the user only changes
the LSB (or only the MSB) this requires 2 bytes per change
(else 4 bytes).

Ports have an advantage when making bulk changes to
many parameters in a row. Ports can auto-increment the
parameter, and so bulk changes are 3 bytes per change;
whereas for NRPN they are 12 bytes.

Thus Ports are 1.5× faster for single parameter changes
and 4× faster for bulk changes of multiple parameters, but
are roughly 1.5× slower for multiple changes to the same
parameter, such as a filter sweep. 1 There is of course no
reason why NRPN and Ports could not be interchanged,
assuming that their parameter numbers mapped to the same
parameters.

7. PATCH TRANSFER

One of the MIDI’s biggest failings is its lack of a standard-
ized patch dump or editing standard. This is curious as the
system exclusive message was, from the very beginning,

1 We considered using F4 to change the Port parameter as F4 MSB LSB;
the value would be sent using Polyphonic Aftertouch. Port parameter 0
(the default) would be standard Polyphonic Aftertouch. This would give
16383 parameters, would yield a 2× improvement for single parameters
and a 6× improvement for bulk changes. To do this trick we’d need
some three-byte voiced channel message, and Polyphonic Aftertouch was
the clear candidate as changing it would have the least impact and MPE
forbids its standard use. However it could still cause problems with non-
MIDI-1.5-Ready devices.



primarily meant for patch dumps [11]. As patch dumps
were never standardized, this has led to a menagerie of
patch dump protocols which can only be described as in-
credible in their variance and poor design [12]. Yet at the
same time, MIDI proposed a standard sample dump proto-
col despite MIDI being a poor choice for sample dumps
due to its speed.

It may be too late to propose a patch dump protocol, for
MIDI 1.5 or even 2.0, because a number of manufacturers
have begun to treat system exclusive as a trade secret or to
abandon it entirely in favor of alternative USB-based byte
protocols [12]. This is in stark contrast from the past, where
manufacturers proudly published their system exclusive
specifications in the name of openness that was the hallmark
of MIDI.

That being said, a standard protocol would go a long
ways towards fostering a better ecosystem. To this end, we
propose the following set of conventions:

7.0.1 Command Syntax

System exclusive commands take the form F0 Manufacturer
(1–3 bytes) Payload..., followed by a status byte, usually
F7. Manufacturer is 1–3 bytes and sets the manufacturer
ID, and thus defines a namespace. Manufacturer IDs are
registered with the MMA.

Our proposed commands take one of two forms:

• Short Commands
Header... Command (1 byte) Data (0–4 bytes) F7

• Long Commands are usually of the form
Header... Command (1 byte) Length (2 bytes) Encoding
Data... (any length) Checksum F7

...where the Header... is F0 Manufacturer (1–3 bytes) Device
(4 bytes) Sector. The Device is four bytes, comprised of
the device’s family code and family member code, 2 bytes
each. The Sector is the Sector (or just a Sector) to which
the device is listening, or is 7F, that represents any Sector
to which the device is listening.

The Command is the directive in question: the first 32
commands are reserved and 10 are defined as described
below. The rest are up to the manufacturer’s discretion. The
Data is encoded using the given Encoding as described in
Section 7.1. The Length is the length of the Data only, as a
14-bit number, and the Checksum is the sum of all the bytes,
unsigned, of all bytes in the Payload except for F0 and the
Checksum, mod 128.

Patch data which uses the conventions in this Section
should be fully, freely, and openly specified.

7.0.2 Actions

A Device must be able to issue or respond to the following
twelve actions. Individual parameters and patches could
be dumped with Ports, but we recommend the Dump com-
mands here for a consistent sysex interface.

Version and Configuration This would be Header... 00
Encoding Data... F7. The specification for the Data... in this
message must be publicly available.

Request Version and Configuration This would be
Header... 01 F7. The device would respond with a Version
and Configuration Message as described earlier.

Send Current Patch Load the patch into current working
memory such that it can be used immediately by the musi-
cian. Do not write to patch memory, nor perform a program
change. This would be Header... 02 Chunk Of Length En-
coding Data Checksum F7. The data may be broken up into
multiple pieces. Of indicates the number of pieces in total,
and Chunk (0...Of−1) represents the which piece this mes-
sage is. Chunks must be sent in ascending order and do not
take effect until the final Chunk is received.

Request Current Patch Request the patch presently in
current working memory, that is, the one currently being
used by the musician. Do not perform a program change.
This would be Header... 03 F7. The device would respond
with a Send Current Patch message.

Dump Patch Write the following patch to a given location
in patch memory. Do not perform a program change to the
patch. This would be Header... 04 Chunk Length Encoding
Location Data Checksum F7. Note that the data may be
broken up into multiple pieces. Of indicates the number of
pieces in total, and Chunk (0...Of−1) represents the which
piece this message is. Chunks must be sent in ascending
order and do not take effect until the final Chunk is received.

Request Dump Patch Request a patch from a given loca-
tion in patch memory. Do not perform a program change.
This would be Header... 05 Location F7. The device would
respond with a Dump Patch message.

Change Patch This consists of an optional Bank Select
message, followed by Program Change to any bank and
patch. A Bank Select is sent with CC 32 for the LSB and
CC 0 for the MSB; both the MSB and LSB must be sent,
and the bank number is interpreted as MSB ×128+ LSB.
If there is only one bank, then Bank Select may be omitted.

Request All Patches in Bank This would be Header... 06
Location F7. Do not perform a program change to any patch.
The device would respond by dumping each patch in turn
from the current bank.

Change Mode If the Device is modal, the mode is changed.
For example, a synthesizer might be playing in single-mode,
multitimbral-mode, or drum mode, each with its own set
of patches. After changing mode, the device may default
to whatever patch in the mode it sees fit. This would be
Header... 07 Mode F7.

Stop All Sound This kills all sound from the device, and
is done with CC 120. The device is encouraged to also
implement CC 123 but it is not required to.

Dump One Patch Parameter This is Header... 09 Parame-
ter (4 bytes) Value (4 bytes) Checksum F7, where both the
Parameter and Value are 4 MIDI bytes (the Value is encoded
via Encoding #2 in Section 7.1); or by Header... 09 Length



Parameter (4 bytes) Encoding Value... Checksum F7, where
the Value is encoded the provided Encoding as discussed
in Section 7.1. Manufacturers are also encouraged to set
parameters, to the degree that they can, via Ports or NRPN.

Query One Patch Parameter We query a parameter via
Header... 08 Parameter (4 bytes) Checksum F7, where the
Parameter is 4 MIDI bytes. The device responds with a
Dump One Patch Parameter message.

7.1 Encodings

We propose five standard data encoding methods. The first
three are obvious to anyone who has dealt with patch dump
system exclusive messages in the past. The fourth is a
logical extension of them. The fifth encoding is meant for
situations where the size of some elements, or of every
element, may vary arbitrarily.

0. Each element, 7 bits long, encoded in one byte.

1. Each element, 8 bits long, encoded by sending groups
of 7 bytes at a time without their high bits, then a
final byte with all 7 high bits. In this final byte, the
low bit is the high bit of byte 1.

2. Each element, 14 bits long, encoded in two bytes,
LSB sent first and MSB sent second.

3. Each element, 16 bits long, encoded by breaking it
into two bytes, LSB first, then sending the resulting
stream of bytes using Method 2.

4. Each element encoded in turn using Variable Length
Encoding, as described below.

Prior to encoding, signed values should be converted to
0...N where 0 represents the lowest negative number and N
represents the highest positive number.

7.1.1 Variable Length Encoding

There are many ways to do a variable length encoding. Here
is one simple possibility that is easy and fast to implement.
The encoding has a variable-length header followed by
a certain amount of data. The header is zero or more 1-
bits, followed by a single 0-bit, which together control the
length of the data. The data appears immediately after this.
The length of the message is equal to the number of bytes
necessary to contain the header (padded with data bits),
plus N additional bytes of data, where N is the number of
1-bits in the header. The encoding has at least an 85.7%
efficiency.

Some examples. We pack up to 6 bits as 0dddddd, encod-
ing the data dddddd. We may pack up to 12 bits as 10ddddd
ddddddd, 18 bits as 110dddd ddddddd ddddddd, 24 bits as
1110ddd ddddddd ddddddd ddddddd, and so on. The header
may cross byte boundaries, so we pack up to 42 bits as
1111110 [ddddddd]×6, but then 55 bits as 1111111 0dddddd
[ddddddd]×7 and 61 bits as 1111111 10ddddd [ddddddd]×8.

The low bit of the data should start at the far end of the
encoding and proceed towards the front, zero-padding at
the front if necessary. For example, the value 371, encoded

in binary as 101110011, should be converted to 12 bits as
000101110011, and then packed as 1000010 1110011. It is
not necessary to provide the full encoding if a value can be
packed in less. For example, if we have a 32-bit parameter
but we are setting its value to just 23, we could just encode
it as 0010111.

7.2 MIDI 2.0 Capability Inquiry

MIDI 2.0 introduced MIDI 2.0 Capability Inquiry (CI),
which allows a sender to determine the capabilities of a
downstream device, and to query and change its parameters,
given bidirectional communication. Unlike much of the
rest of MIDI 2.0, this protocol can be done entirely with
MIDI 1.0 System Exclusive messages. For that reason we
could also adopt it here, and it would serve to replicate
some of the functionality discussed in this Section. We
note however that it has a complex specification totaling
183 pages spread over four documents (M2-100-U through
M2-103-UM of [3]).

8. PITCH RESOLUTION

MIDI’s pitch resolution is per-note. If you want a pitch
whose value is in-between notes, you have three options
in MIDI 1.0. First you can use the MIDI Tuning Standard
(MTS), which specifies which pitch each key falls on: but
you are stuck with 128 pitches. Second, you can send pitch
bend prior to playing the note: but this will change the pitch
of all other notes. Third, you can do the same thing with
MPE, as it requires that bend not affect released notes, and
there is normally one note per channel: but now bend can
no longer be used to affect released notes! And, of course,
it requires that you use MPE.

Ideally, the high resolution pitch of a note would accom-
pany the note itself. MIDI Manufacturer’s Association
document CA-031 [13] proposed that prior to playing a
note, one might send CC 88 as its high resolution veloc-
ity, that is, as the LSB of the note velocity. We suggest
selecting another CC to do the counterpart: high resolution
pitch. The LSB could be measured in 1/128 of a semitone;
or perhaps it would be easier to simply measure it in cents,
reserving the top 28 values.

We note three downsides. First, this is two to three times
slower than a plain Note On, depending on Running Status.
Second, the receiving device would have to support this CC.
Third, the resulting 214 total pitch range is less than MIDI
2.0’s 232, 221 for MTS, or even 215 for MPE’s default pitch
bend.

9. CONCLUSION

We hope that MIDI 2.0 will be successful, but it has had
a difficult roll-out. It is a large specification imposed on a
small community. We have argued that in the meanwhile, or
in the event that 2.0 is not fully adopted, MIDI 1.0 could still
be usefully improved while maintaining backward compati-
bility and relative simplicity. We admit that not everything
can be improved, such as raw serial hardware speed. But
enhancements forming MIDI 1.5, so to speak, could have a
major impact well worth the small cost.
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