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ABSTRACT

We describe a set of conventions to run MIDI over the cables
between individual modules in a modular synthesizer. Our
approach allows modules to modulate one another; or to
be collectively controlled by the musician; or both. The
method deals with a variety of special problems arising from
this fine-grained use of MIDI, such as module polyphony,
MPE incorporation, parameter spaces, and avoiding full
graphs and MIDI merge. We detail and discuss the issues
and challenges, then offer a specification and provide usage
examples.

1. INTRODUCTION

Module-level MIDI implements MIDI 1.0 [1] at the per-
module level in a modular synthesizer. We envision MIDI
as just another cable signal, integrated with gate / control
voltage or audio. The goal is to create a flexible way for
modules to control one another, to be collectively controlled
by the musician, or both. Modules send MIDI to one an-
other over standard modular cables rather than a bus, though
a bus is not precluded.

Why would one wish to contaminate modular with MIDI?
First, MIDI greatly simplifies the wiring for polyphony
and multitimbralism in a modular synthesizer, and enables
the use of MIDI Polyphonic Expression. Second, it helps
automate the control of modules with large numbers of
parameters. Third, it enables patch storage and recall.
Fourth, it provides stable pitch control and a pitch standard
with microtuning. Fifth, it provides compatibility with the
external world.

In this paper we present three major challenges to imple-
menting module-level MIDI, and how we overcome them.
We then present conventions for control of modules by one
another, or by an external controller. Our goal is to both pro-
vide foundations to be used by modules now, and a roadmap
for more elaborate applications in the future. This roadmap
can be modified as necessary later. Thus the spec is only
version 0.5.
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2. RELATED WORK

Modular synthesizers, as originally proposed by Harold
Bode [2], consist of multiple hardware modules that create
or modify audio, or produce analog gate or control volt-
age (CV) to modulate other modules’ settings. Audio or
gate/CV flow from module to module via patch cables.

MIDI, or other forms of digital control of modules, used
to be anathema in the modular world, but over the last few
years it has seen significant growth in interest. The most
common use of MIDI in a modular setup is modules that
translate 5-pin DIN or TRS MIDI1 into gate/CV for other
modules. This configuration is meant to allow a musician,
via an external controller, sequencer, or DAW, to send notes
and parameter changes to select modules in real time.

Digital control of or among modules in modular synthe-
sizers has to date largely used internal bus protocols. The
forerunner in this area has been Buchla, whose systems
feature an internal bus with multiple virtual lines meant to
allow modules to send MIDI to one another or to receive
MIDI from an external controller [3].

MIDI has also been run in a limited fashion on top of the
internal gate/CV bus in Doepfer’s Eurorack modular format.
This scheme, developed by a group of Eurorack develop-
ers, is known as Select Bus, and has been primarily used
to broadcast Program Change (PC) messages to modules
to change their presets [4]. It is incompatible with other
manufacturers’ use of the gate/CV bus, including Doepfer’s.
Expert Sleepers has also introduced modules (such as the
CVM-8 [5]) with one or more separate, dedicated internal
Transistor-Transistor Logic (TTL) serial MIDI bus connec-
tors.

Eurorack has also seen I2C used as an alternative bus
transport. I2C is a two-wire packet-oriented communica-
tion scheme common in electronics. As popularized by the
Monome Teletype [6], a simple control protocol runs on
top of I2C from a leader module to some number of down-
stream follower modules. The protocol runs at 100kbps.
Unfortunately it has not been standardized, resulting in
a plethora of competing I2C-based messages among the
modules which have adopted it. Some Buchla designs also
employ I2C.

Most bus designs assume a single leader per bus. This
means that a single bus line cannot easily support the sce-
nario where module A controls modules B and C while
B also controls C. To realize a general graph structure of
control would require many real or virtual bus lines (as

1 While TRS MIDI uses similar cables, it is not compatible with Euro-
rack as it requires specific circuitry, including an optoisolator.
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in Buchla) and complex addressing. More elaborate bus
protocols, essentially network protocols such as CANBus
that define full graphs, have been occasionally proposed but
not commonly adopted.

Beyond busses, other digital control schemes have focused
on easing the use of polyphonic modules. Notably, TipTop
has recently introduced ART [7], an event protocol running
at 1.25 MBPS over standard cables in Eurorack. ART is
accompanied by Polytip, a format for running parallel ana-
log signals (importantly audio) using a cable with a plug
identical to USB-C, but not using the USB-C protocol.

MIDI is also often used to interconnect and control in-
dividual guitar pedals on a pedalboard: this is somewhat
analogous to modules in a synthesizer. Many guitar ped-
als accept MIDI, and certain pedals (an example would be
those from Morningstar [8]) are meant to distribute PC or
CC messages to them.

3. MIDI OVER MODULAR CABLING

In 2022 wonkystuff [9] introduced MIDI running as TTL se-
rial over the 0.1" Dupont cables used to connect modules in
the AE Modular synthesizer format [10] alongside gate/CV
and audio. This scheme employs a channel distribution
module to break TRS MIDI into separate per-channel mes-
sage streams, each of which can then be routed to chains
of MIDI-controlled oscillators, triggers, and gate/CV gen-
erators. A single chain of modules could be treated as a
one monophonic synthesizer; and parallel chains could col-
lectively implement polyphony via MPE [11] and other
ways.

AE Modular makes this particularly easy because it is
strictly 0–5V with a common ground, and standard MIDI is
likewise also nominally 0–5V. AE Modular cables are single
wires with ground on the power bus, and so are sufficient to
run MIDI as TTL serial data.

wonkystuff’s approach is primarily meant to allow the
musician to control multiple modules using a single exter-
nal controller, sequencer, or DAW. However it has certain
limitations. First, it does not have any way to distinguish
among the modules listening in on the same channel. This
is particularly problematic if one wanted, for example, three
oscillators on a single channel but with different parameter
settings, such as detune. Second, it does not allow modules
to modulate one another: for example, a MIDI-controlled
envelope module modulating a MIDI-controlled oscillator
module, while both are controlled by a DAW. Third, it does
not address the issues raised by MPE, nor MIDI-controlled
polyphonic modules, a popular recent trend.

In this paper we significantly extend this approach, propos-
ing a set of MIDI conventions to follow in order to address
these and other issues, while staying compatible with MIDI
standards. We have expended effort in making basic forms
of the protocol easy for simple devices to implement, while
providing more capabilities to more sophisticated modules
and systems.

3.0.1 Why Not Just a Bus?

We are interested in running MIDI over cables, rather than a
bus, because it makes it much easier to do complex topolo-
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Figure 1. Over-Elaborate MIDI Connectivity Tree Example.
The Distributor module breaks out MIDI data by channel
to individual voice chains. Thick arrows indicate single
MIDI connections containing multiple channel voice data.
Note the three identical polyphonic voice chains, the sep-
arate wavetable voice chain, and the two FX modules in
the Drum Sampler chain. Finally, note that the envelopes
are organized as non-leaf nodes, to enable optional MIDI
Injection.

gies, and because it does not require memorization of vir-
tual “behind the scenes” routings. It does, of course, require
more visible wires. We must admit that because of these
very wires, MIDI over cables is more tangible and retains
much of modular’s physical charm: it’s just another cable
routing like CV or audio.

That being said, a bus is not in any way precluded: indeed
we have discussed the possibility of combining cabling with
a MIDI bus internally on AE Modular.

3.0.2 Why MIDI 1.0?

MIDI 1.0 is now 40 years old, and its failings are very well
understood. But its advantages are also compelling. MIDI
has extensive tooling available, is flexible and extensible,
and is a simple and easily parsed serial protocol. But most
importantly, it is omnipresent in the music industry. By
adopting conventions layered over MIDI, we immediately
gain access to a huge number of devices and software.

Why not MIDI 2.0? MIDI 2.0 addresses MIDI 1.0’s pri-
mary flaws, but it is a large and complex protocol that may
be difficult, if not impossible, for small processors to im-
plement. It is not yet widely adopted in the industry, and is
immature. It would seem to be a poor option for modular
systems with simple modules.

Last, proprietary protocols running on top of I2C have
seen increasing popularity in certain Eurorack circles; but
they are neither standard nor standardized, and often are
little more than arbitrary MIDI translations.



4. CHALLENGES

We begin with three challenges in digital control of mod-
ules via MIDI, and how we will address them. The first
challenge is topology. MIDI is meant for one controller
to control multiple downstream devices. We want to allow
modules to control one another, but we want to avoid a full
graph structure and MIDI Merge. The second challenge
regards namespaces and voices. MIDI has a single names-
pace: channels. But when issuing parameterized control,
we need to distinguish between receiving modules based
both on the voice they are assigned to and the particular
module in that voice. We also consider polyphony and poly-
phonic modules. The third challenge lies in making certain
that the changes we make in the first two challenges do
not require a monolithic, complex protocol that cannot be
implemented by simple devices: we need a way to ramp
up in complexity as needed.

4.1 Challenge 1: Topology and Speed

Anyone who has connected many hardware synthesizers is
painfully familiar with the complexity of wiring them. The
large number of modules in a modular synthesizer can make
this even uglier. Ideally we would place all the modules on
a network and allow any module to communicate with any
other, though this would be complex to implement, require
memorization, and lose the immediacy and (in truth) the
charm of modular.

Regardless, MIDI is far from a network: it is a unidirec-
tional, daisy-chained communications protocol. We aban-
don a bus and allow MIDI to assume a tree topology, with a
leader at the root sending messages to all nodes in the tree.
The root is likely a controller, DAW, or hardware sequencer,
under the control of the musician. Non-leaf nodes in the
tree both respond to and forward these messages to their
children. Figure 1 illustrates an (overly elaborate) example
of a tree of MIDI control among modules.

In a full graph, allowing any node to talk with any other
node would require MIDI Merge. We permit MIDI Merge
but actively avoid requiring it due to its complexity and
introduction of cycles. But we can claw back some of this
power by allowing modules to modulate nodes in their sub-
trees. We do this by optionally introducing a “lightweight
merge” in the form of MIDI injection.

Injection is simple: before it passes data from its parent
to its children, a module is permitted to inject some MIDI
messages into the stream to send to one or more of its chil-
dren. This would allow Module A to modulate Module B,
and B to modulate C, while all of them are being controlled
by the root. Generally non-leaf nodes would often be mod-
ulators (envelopes, say), and modulation targets would be
leaf nodes. Figure 2 illustrates MIDI injection.

MIDI is also slow: it runs at 31250 bits per second. 2

But assuming MIDI does not exit the modular synthesizer,
there is no reason why it couldn’t run as fast as we would
like internally. 115200 BPS seems reasonable as it is a

2 You may be interested as to why. Early MIDI synthesizers had CPUs
operating at multiples of 1 MHz. To quote: “The 31.25 kHz clock can
also be obtained from hardware, for example, by dividing 1 MHz by 32.”
( [12], page 7, §“Hardware”).
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Figure 2. Three Injection Examples. [A] LFO 1 injects
modulation data into the stream to control the Oscillator
pitch, while passing “pure” non-injected data to Envelope
1. [2] Both Envelope 1 and LFO 2 modulate the Filter. This
is done by Envelope 1 injecting modulation data to LFO
2, which ignores it and passes it on while also injecting its
own data. Envelope 1 passes “pure” data to Envelope 2. [C]
Envelope 2 injects data to modulate LFO 3’s depth. LFO
3 responds to this modulation data, and removes it from
the stream before injecting its own data to modulate the
Amplifier.

common baud rate. Speed would be constrained by the
maximum speed afforded by the medium (patch cables) and
the maximum rate that the basic modules’ microcontrollers
can handle.

MIDI traditionally incurs latency as data is transferred
from module to module. Part of this is due to its use of
optoisolators (which we do not need). But excess MIDI
injection could also have significant latency costs.

Last, bidirectionality is useful for transferring and stor-
ing presets. While a MIDI tree is unidirectional, there’s
nothing stopping modules from providing a single back-
channel wire to provide bidirectionality, at least between
two modules.

4.2 Challenge 2: Voices and Namespaces

If we are to control parameters of multiple modules, we
will have a namespace problem.

Historically MIDI has had just one limited namespace to
distinguish between devices: its 16 MIDI channels. How-
ever the recently adopted MIDI Polyphonic Expression
(MPE) specification also uses this namespace to distinguish
among polyphonic voices in the same device, and has intro-
duced “MPE Zones” in a halfhearted attempt to allow the
two usages to coexist [11].

Inside a modular synthesizer we are faced with a bigger
namespace issue. First, as polyphony and multitimbrality
are now popular in modular synthesizers, we must distin-
guish among voices. Second, we must distinguish between
different modules in a given voice: an oscillator will have
different parameters than a filter.

To unravel this, we suggest adopting the approach sug-
gested by MPE: commonly each channel is a separate
voice, 3 and the subtree of modules which collectively pro-

3 There are exceptions. For example, a drum module would likely
produce different drum sounds per-note on the same channel.



duce that voice are known as a voice chain. Within a voice
chain, modules may be distinguished from one another by
their ID, a value ≥ 1. As all modules in a given voice chain
will be listening in on the same channel, IDs are then used
to divide up the parameter space in CC and NRPN. Figure 1
illustrates the need for this namespace, as it has polyphonic
voice chains, multiple envelopes per chain, and multiple
effects units.

A module might set its ID via a DIP switch, or via a value
stored in EEPROM, and very trivial modules might be sim-
ply fixed to an ID, though this is discouraged. NRPN is
straightforwardly partitioned according to ID. But CC is
very limited, and so we have attempted to divide it option-
ally and flexibly by ID. Modules are encouraged to use
certain regions in CC according to their ID but we allow
much leeway. If necessary, and if NRPN is not feasible, a
module may allocate additional IDs for more CC space. We
have also provided a “poor-man’s NRPN”, called auxiliary
parameters, for IDs without CC allocations (Section 5.5).

In some cases, modules need both separate parameters
and joint parameters. For example, two oscillators might
wish to share the Pulse Width parameter but have different
Detune parameters. A module is permitted to share portions
of its ID parameter space with another.

4.2.1 Polyphony and Polyphonic Modules

Several models of polyphony are achievable. First, there is
standard MIDI 1.0 one-channel polyphony, where a voice
assigner module would distribute note messages to individ-
ual voices, as well as copying voice-parameter CCs to all
voices. This could also be encapsulated as a single poly-
phonic module. Second, a polychain is a string of mono-
phonic oscillators, each of which passes note data along
to a subsequent oscillator via soft MIDI THRU when it
is already playing a note. Polyphony in this case would
likely be limited by latency. Third, in MPE each note is
pre-distributed to its own channel by a controller. The dis-
tributor would then send each channel to a separate voice
chain, or would group several channels (hence voices) to
send to a polyphonic module.

A polyphonic module may be thought of as several mono-
phonic modules glued together, each in its own voice chain.
A polyphonic module could sport one MIDI input per voice,
or a single MIDI input for multiple notes along a single
channel, or one input for multi-channel data. In the sec-
ond case, it might terminate multiple monophonic voice
chains (as a multi-VCA package, for example). See Fig-
ure 1 for an example of polyphonic modules in a MIDI tree
configuration.

4.2.2 Why not Distinguish Modules by Channel?

There are many reasons not to assign each module in a voice
chain to its own channel, not the least of which is incom-
patibility with MPE. But one issue is that notes are sent to
specific channels. In a modular synthesizer several modules
may need to respond to the same note, such as oscillators
responding to pitch, envelopes or LFOs responding to gate,
etc. But they cannot do this if they are on different channels.
Channels need to be associated with voices.

4.3 Challenge 3: Simplicity versus Versatility

We imagine that for most people, needs will be very sim-
ple, and many modules will have small microcontrollers.
Thus we need a protocol that can be both simple or more
sophisticated and versatile depending on need and cost. We
address this in five primary ways.

First, we assume that MIDI voice data for a given voice
chain has been filtered to a single channel by a distribution
module, and thus most modules in a chain may operate
as OMNI. Polyphonic modules may instead benefit from
MIDI sent with multiple channels.

Second, modules have default ID settings and these de-
faults vary by module type (oscillator, filter, etc.) Thus
modules often can be simply plugged in and played in
basic configurations. Trivial modules need not have a user-
settable ID at all (though this is discouraged) if there are a
small number of them and their default IDs are all different.

Third, simple devices need only respond to basic 7-bit
CC parameters, but 14-bit CC and NRPN are optionally
provided for more elaborate parameters. CC parameter
regions are set up to be flexible and not set in stone.

Fourth, many systems will just be controlled externally,
and not need module-to-module MIDI modulation: and so
basic modules could ignore this facility. But module-to-
module MIDI modulation is made to be easy: modulators
need only be set to modulate one of 8 generic parameters
that we have set aside in the CC space. Modulation targets
would just map these to their first 8 CC, Auxiliary, or NRPN
parameters.

Fifth, the use of MIDI does not preclude traditional CV in
any way: they can be mixed without incident.

Along these lines, we can think of the protocol at different
levels of capability, depending on need:

4.3.1 Level 1: Trivial Support and CC Learn

At its simplest, the protocol would support a voice chain
for a monophonic synthesizer with a small number of mod-
ules and little external control by the user. An upstream
MIDI distribution module would have filtered out unde-
sired channels, so a downstream module can use OMNI.
Such modules would have hard-coded IDs and only use
the CC parameters allotted to those IDs. If two modules
had conflicting hard-coded IDs, one could still have its CCs
remapped to elsewhere in the CC space via a CC Learn
function or a sysex message. Having hard-coded IDs is
discouraged however.

A module would provide only “pure” (hardware) MIDI
THRU. Polyphonic MPE-style voice chains would be han-
dled entirely by the MIDI distribution module with multiple
per-channel MIDI OUTs.

4.3.2 Level 3: Settable NRPN and Program Change

More advanced modules would have settable IDs, particu-
larly if they wished to use the additional parameter space
afforded by Auxiliary parameters or NRPN. These modules
might also support presets via Program Change, and saving
presets via Program Save (Section 5.5). Note that Program
Change would affect all modules on a channel/voice chain
that respond to it. An optional proposed feature, Module



Select (Section 5.4), would allow one to to indicate which
modules should respond to a Program Change/Save mes-
sage.

4.3.3 Level 3: Modulation Modules

Some modulators (envelopes, LFOs, sequencers, etc.) could
change other modules’ parameters via MIDI. These mod-
ules could simply change one of eight generic modulation
CCs, and their modulation targets would map these CCs to
8 parameters of their choice. Modulators would perform
MIDI injection to, and removal of modulation messages
from, the MIDI stream.

4.3.4 Level 4: Polyphonic Modules and Merge

Polyphonic modules would support a single multi-channel
MIDI connection to connect to other polyphonic modules,
or optionally support multiple OMNI MIDI connections
for simple voice chains. We might also see a MIDI Merge
module if useful.

5. PROPOSED CONVENTIONS (V. 0.5)

This is v. 0.5, and is subject to further revisions.
The topology of the system is a tree. The root node is

often a musician’s controller, DAW, or external sequencer.
Most remaining nodes are individual modules. Parent nodes
in the tree are normally directly connected to child nodes
via user-pluggable cables, though they could be connected
via a bus. Data flows from parent to child only. We adopt
the MIDI THRU concept: nodes can pass data from their
parent on to their children.

Nodes normally pass data through a hardware MIDI
THRU. Nodes wishing to modulate other nodes are also
permitted to inject data into a software THRU, that is, add
data to the stream passed to their children. Nodes may have
multiple MIDI THRUs and they can be of different types
with different kinds of injection: however they should al-
ways have at least one “pure” (non-injected) MIDI THRU.
Nodes may remove data passed to them by their parent prior
to injection of new data: see Section 5.3. See also Figure 2
for examples of injection and MIDI THRU.

A node may have multiple parents only if it keeps their
incoming data streams separate (such as a polyphonic mod-
ule), or if it fully implements MIDI Merge, a rare but per-
mitted case. MIDI Merge plus MIDI THRU make cycles
possible: cycles can overwhelm the MIDI stream and their
impact on the topology is not defined. Nodes may to have
additional MIDI connections outside the primary topology
(such as for bidirectional patch transfer), but their effect is
not defined here.

The speed of MIDI from module to module should be at
least 31250 BPS, but can be faster than this if it is standard-
ized as such on a given modular platform.

Nothing here forbids modules from responding to MIDI as
they like, such taking control over one or more entire chan-
nels if they see fit. For example, it is entirely reasonable that
a sophisticated polyphonic oscillator module might simply
claim an entire channel and all note and CC events on that
channel. However it is often the case that multiple modules
must listen to the same channel and respond to notes and

ID Type
1 Oscillators, Samplers, Note→Gate/Trigger Modules
2 Envelopes
3 LFOs, Sequencers, Clock→Gate/Trigger Modules
4 Filters
5 VCAs, Mixers
6 Effects, Audio Processors
7 CC→CV Generators
8 Miscellaneous

Table 1. Default ID Types

CCs in order to to work together to form a voice. They must
do this without conflicting with one another. Other mod-
ules must control one another via MIDI while also being
externally controlled themselves. The conventions below
deal with cases such as these.

5.1 MIDI Channels, Voices, and Voice Chains

Usually a MIDI channel is associated with a voice, that
is, the set of modules which together produce a sound in
response to a MIDI note. Some voices can have the same
parameters and so collectively act polyphonically, while
multitimbral voices may be distinct.

Commonly a distributor module receives MIDI from an
external sequencer and breaks it out to MIDI outputs per-
channel (thus per-voice). Each MIDI output is routed to a
subtree of modules working together to produce one voice:
this is a voice chain. As the channels have been broken
out, modules in a voice chain may respond to MIDI voice
messages in OMNI mode.

A polyphonic module may subsume multiple voices, hence
multiple channels. Polyphonic modules may receive sep-
arate individual streams (as OMNI) and so participate in
voice chains; or they may receive and send multiple chan-
nels via a single MIDI connection.

A distributor module receiving MPE ought to copy mes-
sages from the MPE master to the key channels as it deems
appropriate.

5.2 Module IDs and Parameters

Each module in a voice (channel) has a unique ID 1–15,
commonly 1–8. The ID determines the region of parameters
allocated to the module in the CC, Auxiliary Parameters
(Section 5.5), and NRPN spaces. Modules have default
assignments based on the module type, shown in Table 1.

Modules are encouraged to have user-changeable IDs,
but simple modules can have hard-coded IDs with default
assignments under the (poor) assumption that the user only
has one module of each type per voice. Indeed, if a module
does not use CC, Auxiliary Parameters, nor NRPN, its ID
is at present not relevant.

Module IDs 1–8 have parameters allocated as CCs. Each
ID has two 14-bit CC pairs called “a” and “b”, and five 7-bit
CCs (“c” through “g”) allocated. We have set some default
ID types regions to include some classic CC names which
show up in DAWs and controllers.



CC Name
0/32 Bank Select
1/33 Mod Wheel
2/34 Open Breath Controller
3/35 Auxiliary
4/36 Open Foot Controller
5/37 Glide MSB/Open LSB
6/38 Data Entry
7/39 Volume MSB/Open LSB
8/40 1a (a/i)
9/41 1b (b/h)

10/42 Pan MSB/Open LSB
11/43 Expression Controller
12/44 6a (a/i) FX Ctrl 1
13/45 6b (b/h) FX Ctrl 2
14/46 2a (a/i)
15/47 2b (b/h)

CC Name
16/48 3a (a/i)
17/49 3b (b/h)
18/50 4a (a/i)
19/51 4b (b/h)
20/52 5a (a/i)
21/53 5b (b/h)
22/54 7a (a/i)
23/55 7b (b/h)
24/56 8a (a/i)
25/57 8b (b/h)
26/58 Mod. a
27/59 Mod. b
28/60 Open
29/61 Open
30/62 Open
31/63 Open

CC Name
64 Sustain Pedal
65 1c Glide Switch
66 1d
67 1e
68 Legato Switch
69 1f
70 2c
71 2d
72 2e Release
73 2f Attack
74 MPE Timbre
75 2g Decay
76 3c Vib. Rate
77 3d Vib. Depth
78 3e Vib. Delay
79 3f

CC Name
80 3g
81 4c
82 4d
83 4e
84 4f
85 4g
86 5c
87 5d
88 5e Hi Res Vel
89 5f
90 5g
91 6c FX1 Amt
92 6d FX2 Amt
93 6e FX3 Amt
94 6f FX4 Amt
95 6g FX5 Amt

CC Name
96 Increment
97 Decrement
98 NRPN LSB
99 NRPN MSB

100 RPN LSB
101 RPN MSB
102 7c
103 7d
104 7e
105 7f
106 7g
107 8c
108 8d
109 8e
110 8f
111 8g

CC Name
112 1g
113 Mod. c
114 Mod. d
115 Mod. e
116 Mod. f
117 Mod. g
118 Mod. h
119 Open
120 All Sound Off
121 Reset Ctrlrs.
122 (Reserved)
123 All Notes Off
124 (Reserved)
125 (Reserved)
126 (Reserved)
127 (Reserved)

Table 2. CC Parameters. The first two columns are 14-bit CC pairs. Each module ID has two 14-bit CCs (a, b) and five 7-bit
CCs (c...g). A 14-bit CC may be split into two 7-bit CCs: the parameter a may be split into a (MSB) and i (LSB), and b into
b and h, hence the notation (a/i) and (b/h). Also shown are System, Open and (Reserved), and Auxiliary parameters, and
Modulation CCs (a...h). ID default regions are set up to attempt to align with some CCs that have optional, traditional names.
Open parameters may be used with care, with the understanding that other modules may also respond to them and that their
purpose may change in the future. (Reserved) parameters may not be used.

A module is free to split one, or both, of its 14-bit CCs
into 7-bit CCs if it needs 8 or 9 CCs. If just one is split, it
should be “b”, split into “b” (the former MSB) and “h” (the
former LSB). If two are split, then “a” may also be split
into “a” and “i” respectively. Table 2 shows the allocated
regions for each ID.

Parameter space is allocated to IDs 9...15 as discussed
in Section 5.5. Also, NRPN allocates 256 parameters to
each ID, as shown in Table 3. The first 9 correspond to
parameters “a” through “i” in the CC map allocated to
the module. NRPN parameters are 14-bit even if their
corresponding CC parameters are 7-bit. Reserved NRPN
parameters should be ignored.

Modules may also change IDs and this ability is strongly
encouraged. Some modules might plausibly use CC Learn
(listening for an incoming CC and memorizing it) or other
remapping scheme to relocate their CCs to regions normally
allotted to other (missing) modules. However in this case
they still ought to have user-changeable IDs if possible, or
at least a fixed ID for default CC values.

A module may be assigned more than one ID if the need
arises. Additionally, in some cases two or more modules
may wish to share parameters in common in addition to
having separate regions. For example, two oscillators may
wish to both be changed by pulsewidth modulation, but
have detune changed separately. This should be done by
having one module set to respond to certain parameters of
the other, ideally by ID.

A polyphonic module could have different IDs for each
voice, but normally they would be the same ID.

A module might also perform all the functions of a voice
and not need other modules. Such modules are effectively
synthesizers in and of themselves and may be assigned a
full channel per voice: they may disregard the suggested
parameter assignments described here, and do as they wish
with CCs and with NRPN, though they might wish to retain
them for consistency.

NRPN Region Range
0–255 [Reserved]

256–511 The first 256 parameters for ID 1
· · ·

3841–4097 The first 256 parameters for ID 15
4098–16383 [Reserved]

Table 3. Allocated NRPN Regions

5.3 Modulation CCs

Two 14-bit CC parameters and six 7-bit CC parameters
are designated Modulation a...h. These generic parameters
may be injected by modulation modules such as envelopes,
LFOs, or sequencers and sent to their children. A child
responds to these CCs as if they were its first eight CC
or NRPN parameters (a..h). If a module does not imple-
ment that many parameters, it may ignore the remaining
modulation parameters.

Modules are free to ignore this feature. Otherwise they are
encouraged to have, as a switchable option, the ability to
respond to or to ignore incoming modulation CCs. Modules
that modulate other modules via MIDI injection must have
this option. If a modulation module itself responds to a
particular modulation CC, then it must remove that CC from
its stream before injecting new messages. See Figure 2 for
examples of injecting data and and ignoring the same.

The two 14-bit modulation CCs are 14-bit even if the cor-
responding regular CCs are 7-bit. They have special rules
to improve atomicity in 14-bit CC. When an MSB arrives,
the parameter is set (to MSB×128) only if the prior CC was
also an MSB for the same parameter, or if there has been no
prior CC. An MSB must precede any series of one or more
LSB. When an LSB arrives, the parameter is then changed
to MSB×128+LSB. Modules may inject parameters other
than modulation CCs, but should not remove those.



MSB Function
0 Program Save
1 Current Program Save (= 0), Revert (= 1)

[Reserved (LSB > 1)]
2–15 [Reserved]

16–31 The first 16 parameters for ID 9
· · ·

112–127 The first 16 parameters for ID 15

Table 4. Auxiliary Parameters. LSB is the value.

5.4 Program Change and Bank Select

Modules may respond to Program Change messages
alone; or include Bank Select (always providing MSB
and LSB). Modules responding to Bank Select should
do so within some contiguous range b ∈ 0...M where
b = 128×MSB+LSB. If a Bank Select value is out of
range for a given module which supports it, it should also
ignore the Program Change. Program and Bank Select may
be injected and removed.
Optional Module Select We are considering using the
MSB (0) of Bank Select as Module Select, used to state
which module IDs should respond to Program Change, Save,
and Revert messages, as shown in Table 5.

5.5 Auxiliary Parameters

The 14-bit CC pair 3/35 provides certain auxiliary parame-
ters, as described below. CC 3 (the MSB) sets the parameter
number as shown in Table 4, and CC 35 then sets its value.
A CC 3 must appear before any series of CC 35: a bare
initial CC 35 should be ignored.

CC 3 = 0 is a Program Save message. CC 35 (LSB) then
gives the value of the program (0...127). The default is 0.
This tells a module to save its current state to the specified
program in the current bank.

CC 3 = 1 is a directive to Save to (value = 0) or Revert to
(value = 1) the current program.

The CC 3 parameters ≥ 16 indicate the first 16 parame-
ters (a...p) for IDs 9...15, and are set only as 7-bit. These
parameters should correspond to the first 16 parameters for
these IDs in NRPN. CC 35 (LSB) gives their value. To set
them in 14-bit, use NRPN.

Reserved parameters and values should be ignored.
We recognize that Program Save and Current Program

Save would represent a break from MIDI tradition in that,
excepting System Exclusive directives, there presently exist
no MIDI messages which modify the semi-permanent state
of the synthesizer, that is, memory that survives power
cycling. Thus these directives may be considered still under
consideration.

5.6 System and Reserved Parameters

There are sixteen 14-bit and 7-bit CC parameters reserved
for system purposes as shown in Figure 2. These include
Bank Select, Modulation Wheel, Data Entry, Sustain Pedal,
All Sound Off, and so on. All modules may respond to
these parameters as appropriate.

The 23 reserved CC parameters should be ignored.

Value Function
0 All Modules on Channel (the default)

1–15 IDs 1 through 15 respectively
16–127 [Reserved]

Table 5. Optional Module Select Values

5.7 Clock, RPN, Sysex, and MIDI Modes

Modules may remove and inject clock signals to perform
clock division or multiplication. RPN may be responded
to by all modules as appropriate. We note that RPN MPE
Configuration parameter may be of particular use to a top-
level distribution module. Modules may also respond to
System Exclusive messages.

Some modules or voices play notes simultaneously (such
as a drumkits), and others play monophonically. The be-
havior in question depends on the choice of modules for a
voice. For this reason, MIDI Modes do not make sense in
this context. Modules may be thought of as being in Modes
3 or 4: but at any rate, they should not respond to Mode
change CC messages, which are reserved.

6. EXAMPLES

6.1 Example: Trivial Monophonic Oscillator

Consider a square wave oscillator with pulse width con-
trolled by CC. It has sound out and gate out. It cannot be
tuned and does not respond to pitch bend. This module
would have one MIDI IN and one pure MIDI THRU, with
no injection. The module would use OMNI as its channel
and could be hard-coded to ID 1, but settable ID would be
better. It could respond to Note On/Off and have a CC set to
PW/Wave. A better oscillator would also respond to NRPN
for PW/Wave.

6.2 Example: Injecting Monophonic LFO

Consider a simple LFO that responds to rate, depth, and
type, and that can inject MIDI to a target. It responds to
aftertouch to increase the depth, in addition to a CC. It also
responds to the Mod Wheel to add to the rate. The module
would have one MIDI IN, one pure MIDI THRU, and one
MIDI THRU with injection.

Via a switch, we would stipulate which modulation param-
eter was output, and whether the module ignored (passed)
or removed modulation data sent to it by its parent. Via a
3-DIP switch we can set the module ID. It would use OMNI
for its channel.

This module would respond to note on, aftertouch, mod
wheel, and several mappable CCs for rate, depth, and type
depending on the ID, as well as NRPN parameters for the
same. It would also respond to (and remove) Modulation
CCs for rate, depth, and type.

6.3 Example: Polyphonic Wavetable Oscillator

Finally consider a 4-voice wavetable oscillator, with four
independent oscillators on four different voices. The os-
cillator can respond to pitch, velocity, bend, and porta-
mento. We can set the detune and degree of aliasing in the



wavetable. The oscillator has patches and so responds to
Program Change but not banks.

The module would have one MIDI IN and THRU that
apply to all channels as well as, at its discretion, four MIDI
IN/THRU socket pairs to work in conjunction with mono-
phonic voice chains. Each oscillator could have its own
ID, but normally they would use the same ID. The module
would respond to note on and off, mappable CCs for Osc
Tuning, PW/Wave, Wavetable, and aliasing, as well as All
Sound Off, All Notes Off, and NRPN. It would also respond
to Program Change.

7. DISCUSSION AND FUTURE WORK

This proposal is version 0.5. Beyond the MIDI modules
already available commercially, we have implemented pre-
liminary versions of this proposal in hardware, including
CC/NRPN response and message injection or removal. We
expect to need to make changes to the proposal, and publish
several revisions.

We recognize that one issue with this proposal is that, in
order to deal with the dual-namespace issue, it must use
much of the CC parameter space. There are only 128 CCs to
go around. We have tried to be flexible and to allow NRPN
and Auxiliary Parameters, but may need to add additional
tricks in the future. The proposal also does not define a
full graph structure. We have attempted to allow modules
to modulate one another while remaining true to MIDI 1.0
standards, and permit (but avoid) MIDI Merge; but we
recognize that there may be rare complex configurations
which are awkward to implement in our scheme.

This proposal was developed for and by the AE Modular
community but it is not in any way limited to AE Modular.
Nothing in the spec precludes porting to other platforms,
like Eurorack. We very much would like to see it used on
those platforms, or inspiring similar designs.
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