Fully Decentralized Planner-Guided Robot Swarms

Michael Schader and Sean Luke

George Mason University, Fairfax VA 22030, USA

{mschader,sean}@gmu.edu

Abstract. Robot swarms hold great potential for accomplishing missions in a
robust, scalable, and flexible manner. However, determining what low-level agent
behavior to implement in order to meet high-level objectives is an unsolved inverse
problem. Building on previous work on partially-centralized planner-guided robot
swarms, we present an approach that achieves total decentralization of executive
and deliberator functions, adds robustness and performance optimization through
dynamic task switching, and employs agent-initiated superrational planning to
coordinate agent activity while responding to changes in the environment. We
demonstrate the effectiveness of the technique with three swarm robotics scenarios.

Keywords: Coordination and control models for multi-agent systems - Knowl-
edge representation and reasoning in robotic systems - Swarm behavior

1 Introduction

Since Beni [3] first developed the idea of robot swarms in 2004, researchers have tried to
control large groups of robots in ways that accomplish complex tasks while preserving
swarm virtues such as redundancy, parallelism, and decentralization. Despite years of
effort since then, Dorigo et al [10] observed in 2020, “[T]he deployment of large groups
of robots, or robot swarms, that coordinate and cooperatively solve a problem or perform
a task, remains a challenge”. Most existing solutions to this challenge either rely on some
degree of centralization, which introduces single points of failure and limits scalability,
or address only basic missions such as area coverage and shape formation, which are far
short of the complex tasks that swarm engineers aspire to perform.

Dorigo predicted that “Hybrid systems mixing model-free and model-based ap-
proaches will likely provide additional power”. In previous work [24], we employed
that philosophy in creating planner-guided robot swarms, a hybrid deliberative/reactive
approach to swarm management. A central automated planner produced plans for each
group of agents within the swarm. At runtime, an orchestrator existing outside the
swarm issued the plans to the agents, collected success reports, monitored sensor data,
determined when actions were complete, and instructed the agents when to advance to
the next plan step.

That architecture enabled a human programmer to specify complex missions in a high-
level planning language for a swarm to execute. However, the centralized deliberator
and executive components were potential single points of runtime failure, reducing
the benefits of swarm decentralization. Here we build on that work by modifying the
architecture to push the deliberative and executive functions down into the swarm agents

M. Schader et al.

themselves. This involves solving problems with action synchronization, task allocation,
and replanning without resorting to outside entities or differentiated swarm members.
Ultimately our distributed executive accomplishes the same missions that the centralized
version can, preserving scalability and robustness without any single points of failure.
In this paper we first review the work done by other researchers on swarm control,
showing that no one else has integrated classical planning into a swarm or induced a
swarm to accomplish complex actions without central direction or an agent hierarchy.
Next, we explain our approach with a formal definition of the system, descriptions of
the components of the architecture, and background on the design philosophy behind
it. Finally, we report the results of three experiments performed on different scenarios:
decentralized shape formation, swarm recovery from loss of agents, and agent-initiated
replanning in response to changes in the environment. We demonstrate the fully decen-
tralized swarm’s robustness and scalability, validating the effectiveness of our method.

2 Previous Work

Published research touching upon our work can be organized into three groups, based on
the degree of decentralization and on whether or not there are separate layers specifying
the mission goals and the individual agent behaviors:

Fartially centralized These methods lead to hub and spoke or hierarchical architectures.
Becker et al [2] explored how a single signal broadcast to all agents in a massive
swarm could be used to guide them to collectively accomplish a task. Kominis et al [14]
translated uncertain, multi-agent planning problems into classical, single-agent ones
that could be centrally solved and then given to the agents. Corah et al [9], Nissim et al
[19], and Torrefio et al [27] implemented methods to break preliminary plans into parts
and have agents refine them through multiple planning rounds. Choudhury et al [7] and
Riyaz et al [23] created hybrid systems, with a centralized task planner to assign tasks
to individual robots combined with an onboard control system enabling each robot to
refine and execute its task. All these methods rely on some central component, which
represents a single point of failure and a limiting factor on scalability.

Decentralized single-layer These approaches amount to control laws which must be
developed prior to runtime. Atay et al [1], Li et al [15], and Sheth [25] created emergent
task allocation methods in which each robot only used information from its neighbors
to select tasks, then sent coordination messages to resolve conflicts, possibly including
adversarial interactions. Chaimowicz et al [6], Ghassemi et al [11], and Michael et al
[18] used combinations of bidding and recruitment to determine role assignments and
when they should be changed. Each of these methods involves designing integrated high-
and low-level activities, limiting flexibility when developing solutions matching swarm
platforms to specific problems.

Decentralized multi-layer Such systems combine the elimination of single points of
failure with the relative ease of separately addressing domain-level and behavior-level
concerns. Birattari et al [4] and Bozhinoski et al [5] proposed “automatic offline design”:

Fully Decentralized Planner-Guided Robot Swarms

enumerating likely missions within a problem domain, using reinforcement learning
or evolutionary computing to generate suitable low-level behaviors in simulation, and
deploying the best solution available for the problem at hand when needed. Coppola [8]
explored this approach extensively. Although promising, this family of solutions requires
the development of a large library of pre-generated behaviors to match to missions when
needed. Our method falls into the same decentralized multi-layer category, but does not
depend on having prebuilt solutions to new mission requirements.

3 Method

In our earlier work, we introduced a novel approach to swarm control: framing the high-
level domain and problem using Planning Domain Definition Language (PDDL) [17],
generating a plan to achieve the goal state with an automated planner, and having a central
executive orchestrate the agents’ activities by adjusting their behavioral parameters and
synchronizing their plan step advances. In this new work, we move the executive and
deliberative functions into the swarm agents themselves, thus eliminating all single points
of failure and enabling truly decentralized operations. We add dynamic task switching
based on action completion information shared by neighbors, enhancing robustness.
Finally, we incorporate agent-initiated replanning to allow the swarm to respond to
changes in the environment.
In our revised formulation, a planner-guided swarm scenario definition can be repre-
sented by a tuple:
Sder = (A, domain, Macr, Mpreq) €))

where the agent class A = (sensors,behaviors) represents the capabilities of a swarm
robot platform, the domain = (predicates,actions) is the PDDL representation of the
planning domain, the action mapping M, : actions — (behaviors, parameters, criteria)
translates each PDDL action to a specific parameterized agent behavior with success
criteria, and the predicate mapping M),,.q : predicates — (sensors, parameters, criteria)
ties predicates needed for replanning to observed states.

A specific run of a scenario starts with scenario definition Sg.r and adds three items:

Srun = (Sdef, problem,n, g) ()

which are the PDDL expression of the planning problem, the count of agents 7, and the
number of groups g. If g is set to zero, the group count decision is delegated to each
agent’s deliberator, which will attempt to generate plans with various numbers of groups,
choosing the smallest g that produces a minimum-length sound plan.

3.1 Definitions

Domain and Problem The PDDL domain defines how the world works from the swarm’s
top-level perspective: what constants will always be present, what predicates can be
true or false, and what actions can be performed in terms of their preconditions and
effects. The PDDL problem specifies the objects to consider, the initial conditions of the
situation, and the goal state to be achieved. The scenario designer creates these two files
to control the swarm.

M. Schader et al.

Global Sensors

Global Readings

Swarm

[
poman, | Swarm Agents T

.., Problem _ World

—
- Pan

Goals

Human

B

Actions, Results

Fig. 1: Fully decentralized planner-guided robot swarm architecture with optional global
Sensors.

Agent Class The agent class defines the capabilities of the agents as they relate to other
parts of the scenario in terms of sensors and behaviors. All agents of the swarm belong
to this single class. The sensors include all the ways an agent can receive information
from the world around it: its own local readings, data it receives from global sensors,
and information exchanged with other agents in its neighborhood. The behaviors are the
micro-behaviors that each swarm agent performs (e.g. “find item A”, “discover site B”,
“deposit item A at site B”’), which lead to emergent phenomena such as coverage and
foraging. A given agent class can be used in multiple scenarios, with different domains
and problems.

Each instantiated agent has its own planner, which takes PDDL domain and problem
files as input and produces PDDL plans as output. The specific planner implementation
can be changed at scenario start time, but it must be identical for all agents, be able to
process the domain file constructs, and be deterministic (always producing the same
output for given inputs). We employ parallel planning to generate plans with multiple
simultaneous actions that are assigned to virtual agents, groups of real agents within
the swarm. Note that this is not multi-agent planning in the sense of generating joint
actions or violating classical planning assumptions; rather, we achieve parallelism by
taking advantage of partially ordered plans in which the actions at each given plan step
are independent.

An agent’s executive manages its specific movements, manipulations, and communi-
cations. Our own software uses a state machine with states EXPLORING, CARRYING,
and DONE, but this is just an implementation detail that is not demanded by the planner-
guided swarm framework. The executive also determines when sensor inputs should
drive replanning based on an updated set of initial conditions in the problem statement.

Action and Predicate Mappings The bridge between the high-level view of the world
in the planning domain and the low-level configuration of the swarm agents’ micro-
behaviors is the mapping layer. When an agent class is paired with a domain file, the
programmer builds two mappings. The first mapping translates domain actions (e.g.
“pick up block A”) into parameterized agent behaviors that will lead to the desired effect
(“use the foraging behavior with the target item set to bricks of type A”). Bundled with
this are the success criteria that must be met to infer that the action has been completed.
The second mapping translates grounded domain predicates (“site D is full”’) into sensor
conditions that will reveal its truth or falsehood (“‘check if the count of bricks deposited
in site D equals the size of site D”, or “determine if a sensor indicates site D is full”).

Fully Decentralized Planner-Guided Robot Swarms

The action mapping is critical in that it translates the abstract actions of a plan into
the configuration of each agent’s behaviors. The predicate mapping is not needed if the
scenario designer specifies all initial conditions and there is no need for replanning;
however, if the agents will need to assess conditions to plan or replan, then the relevant
predicates do indeed need to be mapped to sensor readings and shared knowledge.

3.2 Decentralized plan monitoring

The agents keep track of their individual successes executing behaviors tied to plan
actions, generating a success token each time they finish a granular activity (e.g. “remove
item A from site B”, “discover site C”). By exchanging these success tokens with each
other in the course of their local interactions, sometimes along with factoring in data
from their own sensors or global ones, the agents can determine when the plan action
assigned to their group is complete. In addition, they keep track of other groups’ progress
toward task completion. When an agent learns that all groups have finished the current
planglo step, it advances to the next plan step. As the same knowledge spreads, other
agents will make the same decision, ending up with all agents on the same next step.

3.3 Dynamic task switching

Since each agent knows the action completion status of its own group as well as that
of the other groups, it can choose to temporarily switch groups when certain criteria
are met. If an agent’s current action is complete, and it is not in a state that precludes
switching tasks (e.g. already carrying a certain item), it can identify other groups that
have not finished their actions. If there is such a group, then the agent will switch to it
based on a configured probability (0.1 in our experiments; the exact value has little effect
on performance as long as it is positive). This task switching serves both to optimize
the swarm’s allocation of agents to actions, as well as to provide a fallback capability in
case a portion of the swarm is destroyed or disabled.

3.4 Agent-initiated replanning

Hofstadter [12] named and refined the notion of superrational groups in 1983: when
participants in an interaction know that all the others think the same way as they do, and
that each recursively knows that the others know this, then they should independently
arrive at identical conclusions aimed at maximizing joint benefit. In 2019, Tohmé et
al [26] developed a formal analysis of the concept and determined it to be sound. In
our situation of building homogeneous swarms in which all the agents have the same
software and goals, the necessary conditions for superrationality do indeed hold, given
enough time for the agents in the swarm to converge on the same knowledge of the state
of the world. With a deterministic planner, we can be sure that subject to information
propagation delay, the agents will produce the same updated plans as each other.

4 Experiments

We conducted three experiments designed to test the novel aspects of our fully decen-
tralized planner-guided robot swarm implementation, seeking to verify that the new

M. Schader et al.

5000

|
18000

I
50000

Steps
3000
|
Steps
14000
|
Steps
30000
|

1000
|

10000
I
10000
1

T T T T T T T T
T T T T
40 60 9 135 4 74 85 9% 10 20 40 80

Agents Agents Agents

(a) Letters. (b) Refineries. (c) Smart Sorting.
With 1000 runs of each treatment, the confidence intervals are too small to see.

Fig. 2: Mean steps to completion of scenario for various swarm sizes.

mechanisms succeeded reliably while scaling efficiently as agents were added to the
swarm. First, we exercised basic operations with all centralized components eliminated.
Second, we tested agent-initiated task switching to see if it led to robust recovery from
agent failures. Third, we evaluated the effectiveness of decentralized replanning spurred
by detected changes in the world state. All of our experiments were conducted in the
MASON multiagent simulation toolkit [16], in which we modeled non-point robots,
each exclusively occupying a nonzero area. Agents navigated using virtual pheromone
trails, an established swarm mechanism [20] that was just one of several methods with
which they could find their way.

4.1 Letters: Runtime-decentralized planning, coordination, and monitoring

The Letters scenario is a straightforward mission to have robots arrange themselves to
spell out a three-letter sequence (Figure 3). The locations of the pixels of each letter
are marked in advance, and the agents know when they have entered such a designated
region. The purpose of the experiment is to show the effectiveness and scalability of
a completely decentralized planner-guided swarm. Once the robots are launched, they
have no special base to which to return to or overseer with which to communicate. They
have only the domain and problem presented by the operator to the swarm.

This experiment used the PDDL4J sequential planner [21] with the fast-forward
heuristic search option. We varied the number of agents from 40 up to 135 to observe
the effect on the average number of steps needed to reach the goal state (Figure 2a). We
performed 1000 runs of each treatment with 100% success and verified for statistical
significance using the two-tailed t-test at p = 0.05 with the Bonferroni correction.

A minimum of 39 agents was necessary to finish this mission, 13 for each of the three
letters. The first treatment with 40 agents took an average of 4809 steps to complete.
With 60 agents, that dropped dramatically to 1422, since there were more available to
find and remain in the designated areas, especially for the later spaces to be filled in.
With 90 and 135 agents, the steps needed were further reduced to 828 and 573; the
speedup from more agents leveled off due to physical interference with each other as
well as diminishing returns from having many potential fillers for each needed position.

(a) The swarm agents
explore the area, stop-
ping when they reach
a location within the
specified destination
region.

Fully Decentralized Planner-Guided Robot Swarms

(b) News that Step 1
is complete has prop-
agated through the
swarm, and the agents
move onto their next
action.

(c) The swarm finishes
Step 2 and that word
begins to spread.

=Ll

(d) Ultimately, the
agents finish Step
3 and the task is
completed.

The green and blue dots represent agents on odd- and even-numbered steps. They turn black when
plan execution is complete.

Fig. 3: Stages of the Letters scenario.

4.2 Refineries: Dynamic task switching in response to group failure

Refineries is a stress test of agent task-switching (Figure 4). There are three square piles
of bricks, each consisting of three different layers. One group of agents is assigned to
disassemble each pile. The agents need to bring the bricks to a refinery area, where
they will be processed and removed from the environment. The outer bricks must all
be processed first, then the middle ones, and finally the central bricks. Partway through
the first step, however, all the agents initially assigned to one of the groups are disabled:
rendered permanently immobile. The only way for the swarm to succeed is for the agents
to determine via their short-range interactions that one task group is not succeeding, and
to choose to switch into that group in order to accomplish the mission.

This experiment used the Blackbox parallel planner [13] with its Graphplan solver
ensuring deterministic output. We varied the number of agents from 64 up to 98 to ob-
serve the effect on the average number of steps needed to reach the goal state (Figure 2b).
We performed 1000 runs of each treatment with 100% success and verified for statistical
significance using the two-tailed t-test at p = 0.05 with the Bonferroni correction.

A minimum of 64 agents was needed to complete this assignment: 16 in each of
three groups to gather the outermost layers, plus another 16 in the spare group. With the
minimum number it took an average of 17,744 steps to finish. Using 80 agents reduced
that to 13,444, and with 85 it took 10,957; the additional workers allowed the swarm to
perform the discovery and moving jobs more quickly. 98 agents only improved the step
count to 9807. The limited space around the pickup and dropoff sites placed an upper
bound on the scalability of the swarm, as too many agents on the field blocked each
other from moving around as needed.

The ability of the agents to temporarily switch task groups was critical to the swarm’s
recovery from the externally-imposed disaster, the disabling of all the agents in Group 3.
Figure 5 shows the number of agents working in each group through one run of the
simulation. Early on, members of the unassigned Group 4 switched to Group 2, which
had the job of collecting bricks from the site farthest from the launch point and so needed
the help. At step 3000, the Group 3 members were immobilized and their numbers
disappeared from the graph. Soon after step 5000, some Group 2 members switched to
Group 3 to make up for the lost effort. Around step 7000, the numbers in each group

M. Schader et al.

(a) Agents are injected into the
region with the task of disas-
sembling the boxes layer by
layer.

(d) Surviving agents done with

(b) Step 1 is underway as the
swarm removes outer bricks.

(e) The rebalanced population

(c) Disaster strikes: all the
agents assigned to Group 3
(targeting the center box) are
disabled before finishing.

(f) Disassembly complete.

their own actions temporarily
switch to Group 3 and finish
its work.

attacks the remaining layers.

Green and blue dots are working agents. Gray dots are permanently disabled ones. The brown
progress bar at the top shows how many bricks have been dropped off at the gray-walled refinery.

Fig. 4: Stages of the Refineries scenario.

equalized, then from step 11,000 onward the numbers fluctuated based on which groups
had completed their assigned actions at the time. The low-level task switching behavior
made the swarm robust and able to finish its job even when an entire task group was lost.

4.3 Smart Sorting: Self-initiated replanning to handle changed situation

The Smart Sorting scenario exercises the agents’ coordinated replanning abilities (Fig-
ure 6). The swarm starts with the mission of gathering four different kinds of randomly
scattered bricks and assembling them in order into blocks in a walled area. As soon as
they finish the first two layers (A and B), though, the A block is teleported outside to a
different location. The agents continue with their planned actions, but upon checking
sensor readings, they determine that conditions have changed, so they replan and begin
taking apart the outer blocks so as to reassemble the correct structure.

This experiment used the Madagascar parallel planner [22], specifically its MpC
implementation. We varied the number of agents from 10 up to 80 to observe the effect
on the average number of steps needed to reach the goal state (Figure 2c). We performed

Fully Decentralized Planner-Guided Robot Swarms

Group 3
8] destroyed Some Qroup 2 members Group 1
switch to Group 3 GI'OU P
\ A\ p
o _]
« \
[2)
< (=]
) —
> AN
<
o
—
oS]
—

I I I I
0 5000 10000 15000 20000

Step

Fig. 5: Number of agents working in each task group as time advances in a single run of
the Refineries scenario. At step 3000, all the agents in Group 3 were disabled; soon after,
members of other groups switched in order to finish Group 3’s assigned tasks.

1000 runs of each treatment with 100% success and verified for statistical significance
using the two-tailed t-test at p = 0.05 with the Bonferroni correction.

The minimum number of agents needed to complete this scenario with two groups
was ten, enough for each group to collect all five bricks of a single type. With that
smallest possible population, the swarm took 48,230 steps on average to finish. With
20 agents, that was slashed to 20,018; with 40 it dropped to 11,686; and with 80 it was
7766. This excellent scalability was due to more agents being available to explore and
move bricks around, along with faster information dissemination caused by increased
agent density in the simulation work area.

5 Conclusions and Future Work

Modifying our previously published planner-guided robot swarm architecture to achieve
complete decentralization was a success. Each scenario explored in our experiments
showed a different area of improvement. Eliminating all central components ensured
there were no single points of failure. Introducing dynamic task switching provided
robustness against agent failure. Superrational planning enabled the swarm to incorporate
flexibility into swarm behavior. We conducted all the experiments using the same agent
code, further demonstrating the generality of our method.

In future work, we will attack the problem of retrograde behavior (agents getting out
of sync with each other’s plan steps), quantify aspects of the speed of communications
in a swarm environment, and implement different agent classes with varying navigation
and sensing mechanisms. This work will show for the first time a widely-applicable
approach to building robot swarms that can collectively accomplish complex tasks.

M. Schader et al.

(a) The Swarm starts collect-
ing four different kinds of
blocks and depositing them in
order.

(d) The agents receive a sen-
sor reading that Block A is out
of position; they replan and
start disassembling Blocks B,
C, and D.

(b) The leftmost portion,
Block A, is nearly complete.

(e) Block A has been returned
to its correct location, and the
agents turn to reassembling
Blocks B, C, and D.

o

o
‘e
‘

(c) Block B is complete, but
the world has changed: Block
A has been teleported away
from where it should be.

(f) Mission success.

The green and blue dots represent agents on odd- and even-numbered steps. The gray/brown
shaded squares make up the four different blocks. The gray lines are walls.

Fig. 6: Stages of the Smart Sorting scenario.

References

. Atay, N., Bayazit, B.: Emergent task allocation for mobile robots. In: Proceedings of Robotics:
Science and Systems. Atlanta, GA, USA (June 2007)

. Becker, A., Demaine, E.D., Fekete, S.P., Habibi, G., McLurkin, J.: Reconfiguring massive
particle swarms with limited, global control. In: International Symposium on Algorithms and
Experiments for Sensor Systems, Wireless Networks and Distributed Robotics. pp. 51-66.
Springer (2013)

. Beni, G.: From swarm intelligence to swarm robotics. In: International Workshop on Swarm
Robotics. pp. 1-9. Springer (2004)

. Birattari, M., Ligot, A., Bozhinoski, D., Brambilla, M., Francesca, G., Garattoni, L.,
Garzén Ramos, D., Hasselmann, K., Kegeleirs, M., Kuckling, J., et al.: Automatic off-line
design of robot swarms: a manifesto. Frontiers in Robotics and Al 6, 59 (2019)

. Bozhinoski, D., Birattari, M.: Designing control software for robot swarms: Software engineer-
ing for the development of automatic design methods. In: 2018 IEEE/ACM 1st International
Workshop on Robotics Software Engineering (RoSE). pp. 33-35 (2018)

. Chaimowicz, L., Campos, M.EM., Kumar, V.: Dynamic role assignment for cooperative
robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation
(Cat. No.02CH37292). vol. 1, pp. 293-298 vol.1 (2002)

. Choudhury, S., Gupta, J., Kochenderfer, M., Sadigh, D., Bohg, J.: Dynamic Multi-Robot Task
Allocation under Uncertainty and Temporal Constraints. In: Proceedings of Robotics: Science
and Systems (July 2020)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Fully Decentralized Planner-Guided Robot Swarms

. Coppola, M.: Automatic Design of Verifiable Robot Swarms. Ph.D. thesis, Delft University

of Technology (2021)

. Corah, M., Michael, N.: Efficient online multi-robot exploration via distributed sequential

greedy assignment. In: Proceedings of Robotics: Science and Systems (July 2017)

Dorigo, M., Theraulaz, G., Trianni, V.: Reflections on the future of swarm robotics. Science
Robotics 5(49) (2020)

Ghassemi, P., Chowdhury, S.: Decentralized task allocation in multi-robot systems via bipartite
graph matching augmented with fuzzy clustering. In: International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference. vol.
51753, p. VO2AT03A014. American Society of Mechanical Engineers (2018)

Hofstadter, D.R.: Dilemmas for superrational thinkers, leading up to a luring lottery. Scientific
American 248(6), 739-755 (1983)

Kautz, H., Selman, B.: Blackbox: A new approach to the application of theorem proving to
problem solving. In: AIPS98 Workshop on Planning as Combinatorial Search. vol. 58260, pp.
58-60 (1998)

Kominis, F., Geffner, H.: Beliefs in multiagent planning: From one agent to many. In: Pro-
ceedings of the International Conference on Automated Planning and Scheduling. vol. 25
(2015)

Li, J., Abbas, W., Shabbir, M., Koutsoukos, X.: Resilient Distributed Diffusion for Multi-
Robot Systems Using Centerpoint. In: Proceedings of Robotics: Science and Systems (July
2020)

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A multiagent
simulation environment. Simulation 81(7), 517-527 (2005)

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D.,
Wilkins, D.: PDDL.: the planning domain definition language (1998)

Michael, N., Zavlanos, M., Kumar, V., Pappas, G.: Distributed multi-robot task assignment
and formation control

Nissim, R., Brafman, R.I., Domshlak, C.: A general, fully distributed multi-agent planning
algorithm. In: Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: volume 1-Volume 1. pp. 1323-1330 (2010)

Panait, L., Luke, S.: A pheromone-based utility model for collaborative foraging. In: Au-
tonomous Agents and Multiagent Systems, 2004. AAMAS 2004. Proceedings of the Third
International Joint Conference on. pp. 36-43. IEEE (2004)

Pellier, D., Fiorino, H.: PDDLA4]J: a planning domain description library for Java. Journal of
Experimental and Theoretical Artificial Intelligence 30(1), 143-176 (2018)

Rintanen, J.: Madagascar: Scalable planning with sat. Proceedings of the 8th International
Planning Competition (IPC-2014) 21 (2014)

Riyaz, S.H., Basir, O.: Intelligent planning and execution of tasks using hybrid agents. In:
2009 International Conference on Artificial Intelligence and Computational Intelligence.
vol. 1, pp. 277-282 (2009)

Schader, M., Luke, S.: Planner-guided robot swarms. In: Demazeau, Y., Holvoet, T., Corchado,
J.M., Costantini, S. (eds.) Advances in Practical Applications of Agents, Multi-Agent Systems,
and Trustworthiness. The PAAMS Collection 18th International Conference, PAAMS 2020,
October 7-9, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12092, pp. 224-237.
Springer (2020)

Sheth, R.S.: A Decentralized Strategy for Swarm Robots to Manage Spatially Distributed
Tasks. Ph.D. thesis, Worcester Polytechnic Institute (2017)

Tohmé, F.A., Viglizzo, [.D.: Superrational types. Logic Journal of the IGPL 27(6), 847-864
(2019)

Torrefio, A., Onaindia, E., Sapena, O.: An approach to multi-agent planning with incomplete
information. arXiv preprint arXiv:1501.07256 (2015)

M. Schader et al.

6 Appendix: PDDL Files

Letters domain, problem, and plan

(define (domain LETTERS) (:requirements :strips :typing) (:types group site)
(:constants site-g site-m site-u - site) (:predicates (visited ?s - site) (dummy))
(-action visit-g :parameters (?g - group) :precondition () :effect (visited site-g))
(zaction visit-m :parameters (?g - group) :precondition (visited site-g) :effect (visited site-m))
(zaction visit-u :parameters (?g - group) :precondition (visited site-m) :effect (visited site-u)))
(define (problem GMU) (:domain LETTERS) (:objects group1 - group) (:init (dummy))
(:goal (and (visited site-g) (visited site-m) (visited site-u))))

555, Plan for one group
1 ((visit-g group1)) 2 ((visit-m group1)) 3 ((visit-u group1))

Refineries domain, problem, and plan

(define (domain REFINERIES) (:requirements :strips :typing) (:types group item site)
(:constants site-1a site-1b site-1c site-2a site-2b site-2c site-3a site-3b site-3c refinery - site
item-1a item-1b item-1c item-2a item-2b item-2c item-3a item-3b item-3c - item)

(:predicates (empty ?s - site) (all-at ?i - item ?s - site) (uncarrying ?g - group) (carrying ?g - group ?i - item))
(zaction collect-from-1a :parameters (?g - group) :precondition (and (uncarrying ?g) (all-at item-1a site-1a)
(empty site-1b) (empty site-1c)) :effect (and (not (uncarrying ?g)) (carrying ?g item-1a) (empty site-1a)))

(-action deposit-at :parameters (?g - group ?i - item ?s - site) :precondition (and (carrying ?g ?i))
:effect (and (uncarrying ?g) (not (carrying ?g ?i)) (all-at ?i ?s)))) ;; actions repeated for all sites and items
(define (problem DISPOSE) (:domain REFINERIES) (:objects group1 group2 - group group3 - group)
(:init (uncarrying group1) (uncarrying group2) (uncarrying group3)
(all-at item-1a site-1a) (all-at item-1b site-1b) (all-at item-1c site-1c)) ;; predicates repeated for all
(:goal (and (all-at item-1a refinery) (all-at item-1b refinery) (all-at item-1c refinery)))) ;; predicates repeated for all

;55 Plan for four groups (three groups would be optimal, one is added for redundancy)

1 ((collect-from-3c group1) (collect-from-1c group2) (collect-from-2¢ group3) nil)

2 ((deposit-at group1 item-3c refinery) (deposit-at group2 item-1c refinery) (deposit-at group3 item-2c refinery) nil)
3 ((collect-from-3b group1) (collect-from-1b group2) (collect-from-2b group3) nil)

4 ((deposit-at group1 item-3b refinery) (deposit-at group2 item-1b refinery) (deposit-at group3 item-2b refinery) nil)
5 ((collect-from-3a group1) (collect-from-1a group2) (collect-from-2a group3) nil)

6 ((deposit-at group1 item-3a refinery) (deposit-at group2 item-1a refinery) (deposit-at group3 item-2a refinery) nil)

Smart Sorting domain, problem, initial plan, and revised plan

(define (domain SMART-SORTING,) (:requirements :strips :typing :equality :disjunctive-preconditions)
(:types group item site) (:constants site-a site-b site-c site-d - site item-a item-b item-c item-d - item)
(:predicates (empty ?s - site) (all-at ?i - item ?s - site) (some-at ?i - item ?s - site)

(uncarrying ?g - group) (carrying ?g - group ?i - item))
(-action collect :parameters (?g - group ?i - item) :precondition (and (uncarrying ?g))
:effect (and (not (uncarrying ?g)) (carrying ?g ?i)))
(:action clear-out :parameters (?g - group ?s - site) :precondition (and (uncarrying ?g)
(or (= ?s site-d) (and (= ?s site-c) (empty site-d)) (and (= ?s site-b) (empty site-d) (empty site-c))
(and (= ?s site-a) (empty site-d) (empty site-c) (empty site-b))))
:effect (and (not (all-at item-a ?s)) (not (all-at item-b ?s)) (not (all-at item-c ?s)) (not (all-at item-d ?s))
(not (some-at item-a ?s)) (not (some-at item-b ?s)) (not (some-at item-c ?s)) (not (some-at item-d ?s))
(empty ?s) (uncarrying ?g)))
(-action deposit :parameters (?g - group ?i - item ?s - site) :precondition (and (carrying ?g ?i) (empty ?s)
(or (= ?s site-d) (and (= ?s site-c) (empty site-d)) (and (= ?s site-b) (empty site-d) (empty site-c))
(and (= ?s site-a) (empty site-d) (empty site-c) (empty site-b))))
:effect (and (uncarrying ?g) (not (carrying ?g ?i)) (all-at ?i ?s) (some-at ?i ?s) (not (empty ?s)))))

(define (problem REPLAN) (:domain SMART-SORTING) (:objects group1 group2 - group)

(:init (uncarrying group1) (uncarrying group2) (empty site-a) (empty site-b) (empty site-c) (empty site-d))
(:goal (and (all-at item-a site-a) (all-at item-b site-b) (all-at item-c site-c) (all-at item-d site-d))))

;55 Initial plan for two groups

1 ((collect group1 item-a) (collect group2 item-b)) 2 ((deposit group1 item-a site-a) nil)

3 (nil (deposit group?2 item-b site-b)) 4 ((collect group1 item-d) (collect group2 item-c))

5 (nil (deposit group2 item-c site-c)) 6 ((deposit group1 item-d site-d) nil)

;;;; Revised plan for two groups (after item-a moved out of correct position)

1 ((clear-out group1 site-d) nil) 2 ((collect group1 item-a) (clear-out group2 site-c))

3 (nil (clear-out group?2 site-b)) 4 ((deposit group1 item-a site-a) (collect group2 item-b))

5 ((collect group1 item-c) (deposit group?2 item-b site-b)) 6 ((deposit group1 item-c site-c) (collect group2 item-d))
7 (nil (deposit group?2 item-d site-d))

