
Exploring Planner-Guided Swarms
Running on Real Robots

Michael Schader and Sean Luke

George Mason University, Washington, DC 22030, USA
{mschader,sean}@gmu.edu

Abstract. Robot swarms have been proposed as a way to take advantage of the
scalability, robustness, and adaptability of natural large-scale multiagent systems
in order to solve engineering challenges. However, accomplishing complex tasks
while remaining flexible and decentralized has proven elusive. Our prior work on
planner-guided robot swarms successfully combined a distributed swarm algorithm
implementing low-level behaviors with automated parallel planners and executives
selecting high-level actions for the swarm to perform as a whole, but had only been
tested in simplistic grid-world simulations. Here we demonstrate our approach
on physical robots augmented with experiments in continuous-space simulation,
showing that it is an effective and efficient mechanism for achieving difficult task
objectives to which swarms are rarely applied.

Keywords: Multi-robot systems and real world robotics, Real-time multi-agent
systems, Agent cooperation and negotiation.

1 Introduction

The field of swarm robotics prizes three cardinal virtues. The first virtue is scalability,
thanks to potentially large numbers of inexpensive robots. The second is robustness,
the ability to withstand the loss of members and to accommodate the addition of new
ones. The third is adaptability, the appropriate response to changing conditions in the
environment. These virtues take inspiration from natural systems such as ant colonies,
flocks of birds, schools of fish, and so on. To achieve these goals, swarm robotics designs
have historically taken the form of potentially large numbers of simple and usually
homogenous robots, with limited and typically local interaction and communication, and
with loosely coupled or entirely separated decision-making.

However, the highly decoupled and distributed nature of a typical robot swarm,
valued for these virtues, has also proven difficult to control. As the survey of Brambilla
et al. [5] noted, “[d]ue to the lack of a centralized controller, it is in general very diffi-
cult to effectively control a swarm once it starts operating.” Because they are loosely
coupled, swarms by design cannot easily coordinate to do synchronized, interleaved, or
nontrivial collaborative tasks. Rather, swarm robotics dogma often turns to emergent
behavior, arguing that swarms can achieve complex macro-level behavior through the
micro-interactions of many agents. But while it is feasible, through simulation, to predict
the resulting macrophenomena arising from these interactions, a critical inverse prob-
lem — identifying which micro-behaviors will achieve a desired macrophenomenon —



2 M. Schader and S. Luke

is generally unsolved and perhaps unsolvable. Collective behavior involving synchro-
nization and coordination has proven elusive. In short: researchers have succeeded in
getting swarms to forage, patrol, distribute themselves, and to form shapes, but swarms
have not shown promise in working together to build a house.

The tension here is between coordination and decentralization. The classic method
for identifying, solving, and executing synchronized and collaborative robot tasks is to
use a (normally centralized) task planner and executive with tight coupling. But when
doing so, a swarm degenerates into a single-agent system with multiple effectors (the
swarm robots), hurting scalability due to network complexity, and damaging robustness
by relying on a single point of failure. Global knowledge held by every agent would
not scale well and would limit adaptability, and requiring long-distance communication
among robots would violate the swarm-style focus on having only local interactions.

We are interested in endowing swarm architectures with sophisticated collaboration
and synchronization. To this end, we have developed planner-guided robot swarms as a
novel solution to these problems. In our method, the mission for the swarm is specified
in automated planning terms. Each agent has its own planner, and all use the same
algorithm and inputs, yielding identical results. The swarm is treated as a set of one or
more virtual agents, each composed of many real ones and responsible for the parallel
execution of the actions in the plan steps. An a priori mapping of virtual agent actions
to real agent behaviors is the bridge that leads to emergent behavior in service of the
mission objectives. Our approach does not require tight synchronization among swarm
members but is still robust to retrograde behavior among out-of-sync robots. The method
also seeks to ensure that their plans will ultimately synchronize and align.

In our previous work in this area [21, 22], we assumed ideal and simplistic conditions
in a trivial simulated grid-world, with predictable communications and none of the sensor
noise or action failures associated with actual physical robots. In this paper we remedy
this, showing that potentially large groups of physical robots can collectively perform
synchronized and planned actions. The robots are able to do these tasks while overcoming
physical crowding and interference, significant difficulties in localization and wayfinding,
and physical challenges inherent in object detection grasping and manipulation. We
further show that the method scales and that it can adapt to dynamic changes in the
environment and in the nature of the robot swarm.

We begin with a review of relevant robot swarm research. We then explain our
planner-guided method, describing both physical robot and continuous-space simulation
implementations. We present the results of experiments performed on real robots as a
proof of concept and in simulation as a stress test of time and complexity, showing that
our approach lives up to the virtues of scalability, robustness, and adaptability.

2 Previous Work
Planning for Robot Groups Several researchers have worked to use symbolic planning
to direct groups of robots. Audrito et al. [2] explored specifying high-level goals using
MA-PDDL, the multiagent variant of Planning Domain Definition Language, and auto-
matically translating them into single-agent behaviors using “Aggregate Programming”
(AP) to express low-level activities. Jang et al. [10] experimented in simulation with solv-
ing underwater survey mission planning challenges with sophisticated versions of PDDL



Exploring Planner-Guided Swarms Running on Real Robots 3

that included time and numeric variables, soft constraints, and probabilistic actions. Chen
et al. [8] used Linear Temporal Logic (LTL), a first-order logic calculus with temporal
operators, to define overall objectives, then from that definition synthesized a symbolic
plan for robot swarm members to follow. In follow-up work [7], they extended this
approach to work in a decentralized fashion. The two-layer mechanism has similarities
to our work; however the initial LTL specification and automatically generated plans are
constrained to “location and formation-based swarm behaviors”, primarily formation
control, rather than addressing a general set of possible agent actions. Moarref et al. [15]
also used LTL to generate decentralized symbolic plans for individual swarm members
to follow, and demonstrated some success in simulation.

Decentralized Swarm Control Much literature has applied or extended traditional decen-
tralized swarm approaches: here we only list a few relevant examples. Bachrach et al. [3]
used the “Proto” programming language, designed for directing large groups of agents
by treating them like an amorphous medium, to guide swarm robot movements with
potential fields. This synthesis of low- and mid-level actions produced robust emergent
behaviors, but it did not address high-level goals and decisions. Rossides et al. [20]
adapted the particle swarm optimization technique to work with swarms of actual rather
than virtual members. They were able to demonstrate using a swam to localize a radio
source in physically realistic simulations. The method only applies to swarm movement
rather than any other activities. Suárez et al. [23] implemented the “bat algorithm” on
real robots, showing that the bio-inspired technique could be used for three-dimensional
map-building and navigation. Vardy [25] showed that simple odometry could serve as
the basis for swarming behaviors such as aggregation, and in later work [26] developed
an algorithm for object clustering also based on simple low-level capabilities.

Physical Swarm Robots Also related to our work is physical demonstrations of note-
worthy swarm robot capabilities. Many have explored the classic emergent behavior of
foraging along with some variants. Lu et al. [12] and Nouyan et al. [16] implemented col-
laborative foraging algorithms on both simulated and physical robots. Talamali et al. [24]
combined 200 Kilobots (small limited-capability swarm robots) with augmented re-
ality to implement virtual pheromones and to investigate collective foraging. Other
researchers have demonstrated different swarm behaviors. Adkikari [1] and Farrugia
et al. [9] created physical robot swarms that demonstrated collaborative object transport,
the former achieving superlinear performance with a 30-robot team. Chamanbaz et al. [6]
implemented a consensus algorithm on physical rovers and floating buoys that allowed
the robots to move from one location to another in a coordinated fashion. Petersen
et al. [19] created a system for physical and simulated robots to construct pre-planned
structures from specialized square blocks.

3 Method

In our planner-guided swarm approach (Figure 1), a human programmer uses the Plan-
ning Domain Definition Language (PDDL) [14] to specify a domain, the predicates,
actions, and objects available in the world; and a problem, the initial conditions and goal
state of the situation at hand. These definitions are issued to each agent before it enters



4 M. Schader and S. Luke

Domain

Problem

Swarm Agents

External Sensors

World

Hu
m

an
Ancillary Data

Swarm

Actions, Results

PlannerExecutive

Domain, 
Problem

Plan

Sensor 
Readings

Effector 
Results

Fig. 1: Planner-guided swarm architecture.

Agent 
bool isDone()

Behavior

Plan 
bool isComplete()

Step 
bool isComplete()

Action 
bool isComplete()

Predicate 
bool isTrue()

has-a

has-many

has-many

has-one

has-many

guides

informs

Mact

Mpred

Fig. 2: Component relationships.

the swarm, and are the only centralized element in the architecture. Once online, each
agent uses its planner to produce a plan, a series of possibly parallel macro-actions that
will accomplish the objectives. If the actions are parallelizable, the agents will distribute
themselves (randomly or round-robin, depending on circumstances) to one of several
groups, each responsible for one of the concurrent actions. Each agent’s executive then
begins performing the micro-behaviors associated with its chosen action. As the agents
in the swarm interact with the world, collecting sensor inputs and manipulating objects,
they exchange information with each other when in close proximity. Optional external
sensors, separate from the swarm itself, may provide additional input to agents that are
nearby. When the agents determine that a plan step has been completed, they advance to
the next one, until the goal has been achieved.

3.1 Software Framework

In our implementation (see Figure 2) the key figure is the agent. Each agent uses a
built-in planner to generate a plan, which encapsulates the result of processing a PDDL
domain and a PDDL problem. A plan has one or more steps, each of which have one or
more actions. An action has its own completion criteria allowing it to determine when it
has been accomplished. A step is complete when all its actions have been accomplished,
and a plan is complete when all its steps are complete. Based on the action mapping Mact,
each action is associated with a single behavior which guides the agent to perform certain
activities. Last, the predicate mapping Mpred associates predicates with the plan, one for
each predicate specified in the PDDL domain definition, allowing the agent to assess the
state of the world in planning terms. When the predicates listed as goal conditions in the
PDDL problem statement are all true, the agent is done with the mission.

3.2 Mapping Actions to Behaviors

The action mapping Mact ties together the high-level specifications in the PDDL domain
and problem statements and the low-level behaviors of each swarm agent. While a
classical task planner produces a collection of actions that are triggered by initial
preconditions, are finite in length, and produce expected postconditions (effects), swarm
agent behaviors may run forever and do not yield postconditions. Thus to map an action
into a behavior, we must define a stopping criterion after which we expect the action



Exploring Planner-Guided Swarms Running on Real Robots 5

postconditions have been fulfilled by the behavior. Those conditions can be tied to the
agent’s knowledge of its own activities (such as successfully picking something up),
information received from other agents about their activities, data from the agent’s
sensors, or external data from global sensors helping the swarm.

3.3 Predicate Mappings

The predicate mapping Mpred enables replanning by closing the loop between the ob-
served state of the world and the conditions asserted in the problem statement. Although
classical planning assumptions do not accommodate changes caused by actors other
than the plan-executing agents, rerunning the planner with revised initial conditions
provides an effective way to adjust behavior in response to unexpected updates to the
environment. The inputs specified in the mapping come from the same categories as
those for the action completion criteria: self-knowledge, exchanged information, onboard
sensor readings, and external sensor data.

3.4 Algorithm

The general algorithm for each planner-guided swarm agent is as follows:
1: procedure RunDecentralizedAgent(domain, problem)
2: currentState← problem.initialConditions
3: while plan is nil or not plan.isComplete do
4: if plan is nil then
5: plan←MakePlan(domain, problem)
6: stepNum← 1
7: successes← /0
8: step← plan.steps[stepNum]
9: if step.isComplete then

10: stepNum← stepNum + 1
11: continue
12: action← step.actions[groupNum]
13: if action.isComplete then with probability PswitchGroups
14: groupNum← randomly chosen group number
15: continue
16: 〈behavior, parameters, criteria〉 ← Mact{action}
17: result← Execute(behavior, parameters, criteria)
18: if result = success then
19: Add new token to successes
20: TransmitTokens(successes)
21: for agentSuccesses in ReceiveTokens() do
22: add tokens in agentSuccesses to successes
23: newState← Evaluate(predicates in Mpred)
24: if currentState 6= newState then
25: plan← nil
26: problem.initialConditions← newState
27: currentState← newState
28: continue
The functions referenced in this algorithm are:



6 M. Schader and S. Luke

MakePlan() Run the planner on the supplied domain and problem to generate a new
plan, along with any predicates needed to determine its completion status.

Execute() Move as needed and change the world with effectors as per the active
behavior and its parameters. This could include activities like driving toward a destination,
wandering randomly, picking things up, pressing buttons, assembling structures, and
leaving stigmergic messages.

TransmitTokens() Transmit success tokens and state information to neighboring agents.
This is how the agents share knowledge of their activities.

ReceiveTokens() Process success token messages received from others. This is the
means of coordination that enables the swarm agents to collectively decide when to
advance to the next plan step.

Evaluate() Update the state of the world to determine action completion as well as
any need for replanning. Each agent evaluates the predicates defined in the planning
domain to determine if the environment has changed in a way contrary to the classical
assumptions that only a unitary agent can affect the world, thus resyncing the planner to
observed reality.

4 Experiments in Simulation and Physical Robot Validation

In this paper we demonstrate our method on physical robots and in a realistic robot
swarm simulation, showing its effectiveness and scalability in controlling real groups of
robots despite noise, failure, and the complexity of physical constraints.

Fig. 3: Locobot with brick.

Fig. 4: Robots at work on a Brick Layering scenario.
Red and yellow bricks are at their destinations in the
top right; green and white ones are still in the field.

We perform three experiments on both physical robots and in simulation. The first
is a baseline experiment which demonstrates that the method scales to large numbers
of agents (we tested up to 64). The second experiment tests if the method is robust to
unexpected changes in the number of agents in the swarm, both tolerating loss of agents
and accepting new ones. The third experiment tests if the method can deal with noise
and unexpected state changes in the robot environment.



Exploring Planner-Guided Swarms Running on Real Robots 7

(a) Agents (gray disks)
explore the field for
bricks (colored rectan-
gles).

(b) Some of the first
brick set have reached
their destination, oth-
ers are en route.

(c) The two upper
rows are finished; fill-
ing in the next row is
underway.

(d) All four rows are
correctly filled in; the
agents have declared
the job complete.

Fig. 5: Stages of the Brick Layering scenario in simulation.

Our simulations were created with the MASON multiagent simulation toolkit [13]
using two-dimensional continuous-space. For the physical robot implementation we used
the Trossen Robotics PX100, a robot platform based on the open-source LoCoBot design
(Figure 3). We positioned four AprilTag [17] two-dimensional barcodes on the sides of
the experiment area to add visual localization assistance to the onboard odometry, and
incorporated YOLOv5 object detection [11] trained on a custom set of images of colored
Duplo bricks on the floor.

All code for the abstract swarm operations, including PDDL definitions, parallel
planning, success token management, and completion criteria, was shared between the
physical robot and simulation implementations. We used our own custom implementation
of the GraphPlan algorithm [4] built using the PDDL4J planning toolkit [18].

Base Scenario The experiments we performed are built on a common core challenge
we call Brick Layering (Figures 4 and 5). The initial state has bricks of four different
colors scattered throughout the large field portion of the environment. The goal state has
the bricks arranged by color in rows in the target area: red nearest the wall, followed by
yellow, then green, and finally white (dark gray in simulation). To achieve the objective,
the swarm must move the bricks in the correct sequence, filling in the farthest layers first,
or their own movements will disrupt the pattern.

PDDL Definition The planning domain for Brick Layering has one set of predicates to
specify if each area is empty, i.e. (area1-empty), (area2-empty), etc; and another to tell
what color brick each contains, such as (area1-contains ?item), (area2-contains ?item),
and so on, in which ?item is a placeholder for one of the four brick types. The domain
also contains actions to fill or empty each area with a particular kind of brick, as in
(fill-area1 ?item), (empty-area2 ?item), and the like. The planning problem has initial
conditions with all four areas being empty, and a goal state of each area containing the
correct color bricks. Driven by these dependencies, the planner produces the following
straightforward single-group plan to be executed in sequential order: (fill-area1 red-brick),
(fill-area1 yellow-brick), (fill-area1 green-brick), (fill-area1 white-brick).

Action Mapping The crosswalk Mact between plan actions and swarm member behaviors
is based on translating fill-area and empty-area directives into foraging activities. The



8 M. Schader and S. Luke

50
00

10
00

0
15

00
0

20
00

0

S
te

ps
 to

 C
om

pl
et

io
n

16 Agents 32 Agents 64 Agents4 Agents 8 Agents

Fig. 6: Scalability in simulation: steps to completion for full
runs with various numbers of agents.

Robots Minutes to Speedup
completion vs one

1 45.1 1.00
2 24.1 1.87
3 17.6 2.56
4 16.4 2.75

Fig. 7: Scalability results
with physical robots.

agents’ low-level collect() behavior has parameters for item, source-area, and destination-
area. The completion criterion is for the count of fill-area or empty-area events to equal the
preconfigured size of each area: four in the physical robot scenario and 64 in simulation.
As an example, the plan action (fill-area1 red-brick) maps to the agent behavior collect(red-
brick, field, area1), which means, “navigate to the field, then wander looking for a red
brick; when you find one, pick it up, navigate to area1, and drop it off; repeat until area1
is full”.

Predicate Mapping The mapping Mpred between domain predicates and agent knowledge
is largely based on the counts of actions accomplished. For example, the truth value of
(area4-contains white-brick) is determined by taking the count of (fill-area4 white-brick)
events, subtracting the number of (empty-area4 white-brick) events, and seeing if the
result equals the size of area4. The only other mechanism in this mapping is used in the
third experiment, in which an external sensor determines if red bricks are in area1 or not.

4.1 Experiment 1: Scalability

In the first experiment we examined how the planner-guided swarm method works with
different numbers of agents. Ideally, the more robots that are used, the faster the mission
will be accomplished, up to the point of negative returns due to crowding and interference
among too many individuals. One aspect of this challenge that makes scaling up difficult
is contention for the last few bricks of a color, requiring the robots to implicitly or
explicitly coordinate their collection actions. Another is the common destination region
for robots carrying bricks of the same color, forcing them to navigate around each other
on the way to and from each delivery.

In simulation, we set the brick count to 256 and conducted runs with 4, 8, 16, 32,
and 64 agents. Average steps to completion ranged from 23,537 with four agents down
to 3643 with 64 agents (Figure 6), showing that our method works and scales from a few
agents up to common swarm population sizes. We performed 1000 runs of each treatment



Exploring Planner-Guided Swarms Running on Real Robots 9

10
15

20
25

30

D
el

iv
er

ie
s 

pe
r 

50
0 

st
ep

s

32 Agents 64 Agents4 Agents 8 Agents 16 Agents

Fig. 8: Robustness in simulation: deliveries per 500 steps for
run segments with varying numbers of agents.

Robots Deliveries Speedup
per minute vs one

1 0.53 1.00
2 0.73 1.39
3 0.81 1.53
4 1.26 2.39

Fig. 9: Robustness results
with physical robots.

in simulation with 100% completion, and verified that all step counts were statistically
significant using a two-tailed t-test at p = 0.05 with the Bonferroni correction.

For physical validation, we performed full runs of the scenario with sixteen bricks
using one, two, three, and four robots, in a much smaller and physically constraining
space, so crowding was much more of an issue compared to simulation. We measured
the time to completion for each group size and observed that every increase led to faster
mission completion (Figure 7). Two robots were 87% faster than one robot, and three
robots were 2.5 times as fast as one. With four robots, the speedup increased only to 2.75,
showing diminishing returns as expected based on the diameter of the robots and the
area of the field. These results showed the scalability of our approach with real robots.

4.2 Experiment 2: Robustness

In the second experiment, we evaluated the planner-guided swarm’s ability to continue
progressing with a mission (albeit more slowly) when some swarm members are removed,
and to speed up progress when new swarm members are added. If working as intended,
the swarm will maintain its knowledge of the state of the world regardless of membership
changes, tolerating the loss of departing individuals and rapidly incorporating new
arrivals. Even the gradual complete replacement of the original swarm members should
pose no problem since all are fungible and there is no hierarchy.

In simulation we performed repeated runs with 256 bricks, adding or removing
randomly-selected agents every 500 steps to exercise groups with 4, 8, 16, 32, and 64
individuals, while measuring the rate of brick delivery over time (Figure 8). We evaluated
1000 periods of each population size in simulation, and verified that all delivery rates
were statistically significant using the two-tailed t-test at p = 0.05 with the Bonferroni
correction. Periods with more agents were consistently more productive than those
with fewer; average rates ranged from 8.5 deliveries per 500-step period up to 33.7.
This showed the planner-guided swarm’s ability to robustly tolerate removals and take
advantage of additions.



10 M. Schader and S. Luke

55
00

60
00

65
00

70
00

75
00

S
te

ps
 to

 C
om

pl
et

io
n

Step 2 Step 3 Step 4

Fig. 10: Adaptability in simulation: steps to completion for
32-agent runs with different change notification times.

Notif. Mins to Add’l mins
step compl. needed

2 29.2 5.1
3 31.9 7.8
4 33.7 9.6

Fig. 11: Adaptability re-
sults with physical robots.

For physical validation, we launched the sixteen-brick scenario with three robots,
then added or removed randomly-selected robots every two minutes to test with 1, 2, 3,
and 4 individuals. In spite of this swapping in and out of swarm members, the group
continued to progress in the plan, ultimately succeeding. From telemetry we determined
the time periods when each number of robots was active and counted the bricks delivered
during each period. Delivery rates ranged from 0.53 bricks per minute for one robot up
to 1.26 for four (Figure 9), consistent with speedups expected when using more robots.

4.3 Experiment 3: Adaptability

In the third experiment, we explored how a planner-guided swarm can respond to
changed circumstances. For this we added a new component to the scenario: a sensor
positioned near the brick dropoff area that could observe how many bricks of each color
were present. During each run, some time after the first two rows were filled in, we
would remove the uppermost layer of red bricks and return them to the field, undoing
some of the group’s work. After a variable delay, the sensor would inform the swarm
members of this change to the world. In response, the individuals would replan based on
their updated knowledge of the conditions, remove already-placed bricks as needed to
expose the empty top section, then proceed with the usual layering sequence. We would
expect the swarm to accommodate the unexpected change and still complete the mission,
with earlier notification leading to faster completion than later notification due to the
varying amount of rework needed.

In simulation we ran 32 agents through the same series of environmental change sce-
narios with 256 bricks. For notification after plan steps two, three, and four, the average
time steps to completion were 5491, 6569, and 7494 respectively, demonstrating that the
sooner the swarm learns about a changed situation, the faster it can replan and ultimately
complete the assignment (Figure 10). We performed 1000 runs of each treatment in
simulation with 100% completion, and verified that all step counts were statistically
significant using the two-tailed t-test at p = 0.05 with the Bonferroni correction.



Exploring Planner-Guided Swarms Running on Real Robots 11

For physical validation, we used eight bricks and two robots. We started the scenario
and allowed the group to complete plan steps one and two, building the red and yellow
brick layers. We then removed the first layer and redistributed the red bricks to the field.
The sensor noted this change and informed the robots. Upon learning the news, each
robot replanned, deciding to disassemble the second layer to gain access to the first, then
begin building the four layers again. The revised plans prepended the action (empty-area2
yellow-brick) to the filling steps in the original. Making the same decisions independently,
the robots completed the challenge despite the change to their environment.

During successive real robot runs, we delayed notification of this change to the
end of plan step three, and then to the end of plan step four. This led to additional
preliminary steps being added, i.e. (empty-area3 green-brick) for the step three change
and (empty-area4 white-brick) followed by that for the step four change. Across these
runs, we observed that the earlier the robots learned about the removal of the top layer,
the sooner they could replan and the more quickly they finished the mission (Figure 11).

5 Conclusion

We built on our prior work with planner-guided robot swarms, demonstrating the ap-
proach on physical robots and in continuous-space simulation for the first time. We
showed that the technique is scalable, robust, and adaptable in real swarm and multi-
robot conditions. In future work will build a planner-guided swarm out of larger numbers
of physical robots. With it we will experiment with more sophisticated types of collab-
oration among agents, and evaluate various navigation and communication methods.
This will help pave the road from research to real-world applications for this powerful,
general approach to swarm engineering.

References

1. Adhikari, S.: Study of Scalability in a Robot Swarm Performance and Demonstration of
Superlinear Performance in Conveyor Bucket Brigades and Collaborative Pulling. Ph.D.
thesis, The University of Toledo (2021)

2. Audrito, G., Casadei, R., Torta, G.: Fostering resilient execution of multi-agent plans through
self-organisation. In: 2021 IEEE International Conference on Autonomic Computing and
Self-Organizing Systems Companion (ACSOS-C). pp. 81–86. IEEE (2021)

3. Bachrach, J., Beal, J., McLurkin, J.: Composable continuous-space programs for robotic
swarms. Neural Computing and Applications 19(6), 825–847 (2010)

4. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial intelligence
90(1-2), 281–300 (1997)

5. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the
swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013)

6. Chamanbaz, M., Mateo, D., Zoss, B.M., Tokić, G., Wilhelm, E., Bouffanais, R., Yue, D.K.:
Swarm-enabling technology for multi-robot systems. Frontiers in Robotics and AI 4, 12
(2017)

7. Chen, J., Sun, R., Kress-Gazit, H.: Distributed control of robotic swarms from reactive high-
level specifications. In: 2021 IEEE 17th International Conference on Automation Science and
Engineering (CASE). pp. 1247–1254. IEEE (2021)



12 M. Schader and S. Luke

8. Chen, J., Wang, H., Rubenstein, M., Kress-Gazit, H.: Automatic control synthesis for swarm
robots from formation and location-based high-level specifications. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). pp. 8027–8034. IEEE
(2020)

9. Farrugia, J.L., Fabri, S.G.: Swarm robotics for object transportation. In: 2018 UKACC 12th
International Conference on Control (CONTROL). pp. 353–358. IEEE (2018)

10. Jang, J., Do, H., Kim, J.: Mission planning for underwater survey with autonomous marine
vehicles. Journal of Ocean Engineering and Technology 36(1), 41–49 (2022)

11. Jocher, G., et al.: ultralytics/yolov5: v3.1 - Bug Fixes and Performance Improvements (Oct
2020). https://doi.org/10.5281/zenodo.4154370, https://doi.org/10.5281/zenodo.4154370

12. Lu, Q., Griego, A.D., Fricke, G.M., Moses, M.E.: Comparing physical and simulated perfor-
mance of a deterministic and a bio-inspired stochastic foraging strategy for robot swarms. In:
2019 International Conference on Robotics and Automation (ICRA). pp. 9285–9291. IEEE
(2019)

13. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A multiagent
simulation environment. Simulation 81(7), 517–527 (2005)

14. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D.,
Wilkins, D.: PDDL: the planning domain definition language (1998)

15. Moarref, S., Kress-Gazit, H.: Decentralized control of robotic swarms from high-level tem-
poral logic specifications. In: 2017 international symposium on multi-robot and multi-agent
systems (MRS). pp. 17–23. IEEE (2017)

16. Nouyan, S., Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-organized
robot colonies. IEEE Transactions on Evolutionary Computation 13(4), 695–711 (2009)

17. Olson, E.: Apriltag: A robust and flexible visual fiducial system. In: 2011 IEEE international
conference on robotics and automation. pp. 3400–3407. IEEE (2011)

18. Pellier, D., Fiorino, H.: PDDL4J: a planning domain description library for Java. Journal of
Experimental and Theoretical Artificial Intelligence 30(1), 143–176 (2018)

19. Petersen, K.H., Nagpal, R., Werfel, J.K.: Termes: An autonomous robotic system for three-
dimensional collective construction. Robotics: science and systems VII (2011)

20. Rossides, G., Metcalfe, B., Hunter, A.: Particle swarm optimization—an adaptation for the
control of robotic swarms. Robotics 10(2), 58 (2021)

21. Schader, M., Luke, S.: Planner-guided robot swarms. In: International Conference on Practical
Applications of Agents and Multi-Agent Systems. pp. 224–237. Springer (2020)

22. Schader, M., Luke, S.: Fully decentralized planner-guided robot swarms. In: International
Conference on Practical Applications of Agents and Multi-Agent Systems. pp. 241–254.
Springer (2021)

23. Suárez, P., Iglesias, A., Gálvez, A.: Make robots be bats: specializing robotic swarms to the
bat algorithm. Swarm and Evolutionary Computation 44, 113–129 (2019)

24. Talamali, M.S., Bose, T., Haire, M., Xu, X., Marshall, J.A., Reina, A.: Sophisticated collective
foraging with minimalist agents: a swarm robotics test. Swarm Intelligence 14(1), 25–56
(2020)

25. Vardy, A.: Aggregation in robot swarms using odometry. Artificial Life and Robotics 21(4),
443–450 (2016)

26. Vardy, A.: Orbital construction: Swarms of simple robots building enclosures. In: 2018 IEEE
3rd International Workshops on Foundations and Applications of Self* Systems (FAS* W).
pp. 147–153. IEEE (2018)


