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Abstract

Multi-agent research often borrows from biology, where
remarkable examples of collective intelligence may be
found. One interesting example is ant colonies’ use of
pheromones as a joint communication mechanism. In
this paper we propose two pheromone-based algorithms
for artificial agent foraging, trail-creation, and other
tasks. Whereas practically all previous work in this area
has focused on biologically-plausible but ad-hoc single
pheromone models, we have developed a formalism which
uses multiple pheromones to guide cooperative tasks. This
model bears some similarity to reinforcement learning.
However, our model takes advantage of symmetries com-
mon to foraging environments which enables it to achieve
much faster reward propagation than reinforcement learn-
ing does. Using this approach we demonstrate cooperative
behaviors well beyond the previous ant-foraging work, in-
cluding the ability to create optimal foraging paths in the
presence of obstacles, to cope with dynamic environments,
and to follow tours with multiple waypoints. We believe that
this model may be used for more complex problems still.

1. Introduction

Social insects provide a useful example from which
multi-agent research draws inspiration, because they yield
sophisticated collective action arising from very large num-
bers of agents following relatively simpler individual be-
haviors. Social insect-inspired “swarm behavior” methods
have found their way into clustering and foraging algo-
rithms in multi-agent and robotics research (for exam-
ple, [1, 8]). Ideas inspired from swarm behavior have also
emerged inant-colony optimization, a population-oriented
stochastic search method which has been very successful in
difficult optimization problems such as network routing [4].

For many such collective behaviors a few key communi-
cation procedures form the substrate on which the swarm
relies to achieve its task. A notable example is the use

of pheromones, chemical substances deposited by ants and
similar social insects in order to mark the environment with
information to assist other ants at a later time. For exam-
ple, while foraging for food, an ant deposits pheromones to
mark trails connecting the nest to food sources [9]. This in-
formation is later used by the ant to find its way back to
the food sources, and also to recruit other ants to the forag-
ing task. Ants use pheromones to impressive degree in for-
aging and other tasks. For example, leafcutter ants are able
to organize trails connecting their nest with food sources lo-
cated as far as hundreds of meters away [9].

We are interested in the capabilities of pheromones as
a guide for artificial agents and robots. In some sense
pheromones may be viewed as a mechanism for inter-agent
communication that can help reduce the complexity of in-
dividual agents. But pheromones cannot be viewed as es-
sentially a blackboard architecture. While pheromones are
global in that they may be deposited by and read by any
agent, and generally last long periods of time, they arelo-
cal in that agents may only read or change the pheromone
concentrations local to themselves in the environment.

Our model treats pheromones as utility estimates for
environment states, and our agents’ pheromone-depositing
and decision-making functions somewhat resemble, but are
not the same as, utility update and state transition functions
in reinforcement learning. The model allows the use of mul-
tiple pheromones, and an agent’s choice of pheromones to
update or to use in decision-making is based on the agent’s
current internal state. In this way the agents may be seen as
mobile automata responding to and updating external state
in the environment.

This model is in marked contrast to nearly all the ex-
isting pheromone-based foraging literature. Previous work
has eschewed any formalism, concentrating instead on ap-
proaches inspired by biology if not actually biologically
plausible. Importantly, because agents generally use only
one pheromone, these models assume a single pheromone in
order to mark locations to food, and so must rely on an ad-
hoc mechanism for getting back home (for example, com-
pass information).



We begin with a description of previous work in sim-
ulated ant foraging and then present the new model. We
then show with application of the model to foraging in en-
vironments with obstacles, with a moving food source, or
that contain multiple waypoints. The paper concludes with
a brief discussion of the results, and lists several directions
for future work.

2. Previous Work

Artificial swarm foraging often utilizes various forms of
“indirect communication”, involving the implicit transfer of
information from agent to agent through modification of
the world environment. Examples of indirect communica-
tion include: leaving footsteps in snow, leaving a trail of
bread crumbs in order to find one’s way back home, and
providing hints through the placement of objects in the en-
vironment (perhaps including the agent’s body itself).

Much of the indirect communication literature has drawn
inspiration from social insects’ use of pheromones to mark
trails or to recruit other agents for tasks [9]. Pheromones are
chemical compounds whose presence and concentration can
be sensed by fellow insects, and like many other media for
indirect communication, pheromones can last a long time
in the environment, though they may diffuse or evaporate.
Early models of ants (for example [7]) have demonstrated
that pheromones make it possible for ants to optimize trails
from the nest to a food source. It has been suggested that this
happens because larger amounts of pheromones can more
quickly accumulate on the shorter paths, rather than on the
longer ones [2, 3].

Several pheromone-based learning algorithms have
been proposed for foraging problem domains. A se-
ries of reinforcement learning algorithms have adopted
a fixed pheromone depositing procedure, and use cur-
rent pheromone amounts as additional sensor information
while exploring the space or while updating the state-
action utility estimates [10, 12, 13]. Evolutionary compu-
tation techniques have also been applied to learn explo-
ration/exploitation strategies using pheromones deposited
by hardcoded mechanisms. For example, in [16, 17] evo-
lutionary computation is used to tune an agent policy in an
application involving multiple digital pheromones. A sim-
ilar idea applied to network routing is presented in [19].
There have been relatively fewer attempts to actually learn
the pheromone-depositing procedure itself: the most no-
table example is AntFarm, a system that combined com-
munication via pheromones and evolutionary computation
[5, 6]. AntFarm ants use a single pheromone to mark trails
toward food sources, but use a compass to point themselves
along the shortest path back to the nest.

Some work has demonstrated the ability of ants to dy-
namically react to changes in the environment. Resnick

[15] demonstrates pheromone-based algorithms which en-
able ants to “forget” about depleted food sources and estab-
lish paths to new ones. Further investigations of this model
are presented in [14].

The previous work has largely been ad-hoc: it assumes a
single ant pheromone to help set up a gradient to the food
source, plus some arbitrarya priori mechanism to return to
the nest (a built-in compass, a gradient produced by the nest
itself, etc.). This assumption is either stated explicitly, or
it is adopted implicitly by using specific environment mod-
els and transition functions. Usually this is justified in terms
of biology (ants’ use of navigational techniques, such as ori-
entation based on position of the sun).

We are aware of two papers which do not rely on ad-hoc
methods to return to the nest. The first such work [20] is
similar to our own, using two pheromones to establish gra-
dients to the nest and to a food source in the presence of an
obstacle. The ants use simple pheromone addition to cre-
ate trails and so the authors rely on high rates of pheromone
evaporation to maintain the gradients. Another paper where
foraging agents do not have ad-hoc methods for nest re-
covery is presented in [18]. Here, Vaughanet al propose
agent behaviors that usedirected pheromones(pheromones
that indicate a direction), and show successful foraging in
simulation and on real robots. Aside from using directed
pheromones, their work also assumes that the agents can de-
posit pheromones at any location in the environment, even
if they are located far away from it (similar to a random-
access memory).

3. A Reexamination

We begin with a description of the so-called “central
nest foraging” problem: the environment is a nontoroidal
grid world and consists of a nest location and someN food
source locations (for simplicity, our examples will assume
N = 1). To be consistent with past literature, we will refer to
our swarm agents as “ants”. Ants leave the nest in search of
the food sources. From any given square, an ant may move
to any eight-neighbor square which is not occupied by too
many ants (we set the maximum to 10) or does not contain
an obstacle. When it happens upon a food source, the ant be-
comes laden with food. When reaching the nest again, the
ant leaves the food at the nest and begins searching again.
The goal is to maximize the rate of food brought to the nest
from the food sources.

The foraging task may be abstractly viewed as a se-
quence of two alternating tasks for each ant: start from the
nest and reach the food source, and then start from the food
source laden with food and reach the nest. The particular
task the ant must perform depends on its internal state: ei-
ther it is laden with food or it is not. We view the perfor-
mance of each of these tasks as anepisodeof state transi-



tions for the ant: where the nest is the start state and the food
source is the goal state, or vice versa. The ant receives a re-
ward at goal states; at other states it does not.

This may now be cast into a framework which strongly
resembles reinforcement learning, where pheromone values
are theutility valuesof various states (ant locations). The
ant’s external state sis the ant’s current location. An ant
receives a rewardR(s) for transitioning to the desired goal
state (the food location or nest, depending on internal state).
The utility of a stateUp(s) is the concentration of a given
pheromone typep at locations; when foraging, each state
has two utilities, each encoded in one type of pheromone.
The ant’s policyπ(S→A), which maps states to actions, may
be defined to be “move towards the neighboring stateswith
the highest valueUp(s).” The foraging algorithm presented
here deviates somewhat from traditional dynamic program-
ming and reinforcement learning methods in the assump-
tions that it makes about the model. Here the model is pre-
sumed to besymmetric, meaning that if the ant can travel
from states1 to neighboring states2 with some probabil-
ity, then the ant can also travel back froms2 directly to s1

with the same probability. Symmetry is not always a valid
assumption depending on the environment: but we believe
it to be common in many robotics and multi-agent environ-
ments. The model is also usually, but not required to be,de-
terministic: the action an ant chooses in statesi will always
result in transitioning to a specific statesj .

The particular choice of pheromones to update and to
base transition decisions on is dependent on the ant’s in-
ternal state (in this example: if it’s laden with food or not).
Thus an ant’s policy may be viewed as an automaton which,
depending on the external and internal states, plus the exter-
nal state utilities, reward function, and transition model, will
then transition to new internal and external states and will
update utilities of the external states.

As we will discuss later, although this model bears a
strong similarity with reinforcement learning models, the
assumption of symmetry makes possible update rules which
are much more efficient than reinforcement-learning style
“backup” rules like TD(λ) or prioritized sweeping. One
such efficient update rule is essentially a modified form of
value iteration though its application is somewhat unusual.

Imagine, as is shown in Figure 1 that the ant has just tran-
sitioned from locations to locations′, and ats′ the ant now
has available actionsa∈ A. The model provides the proba-
bilities T(s′,a,s′′) that performinga in s′ will transition to
s′′. Let γ be a learning rate constant between 0 and 1. The
update rule would then be:

Up(s
′) = R(s′)+ γmax

a∈A

∑

s′′

T(s′,a,s′′)Up(s
′′)

s
(s'')

s'

(s'') (s'') (s'')

(s'')

(s'') (s'') (s'')

Figure 1. State transitions for a simple two-
dimensional discrete grid environment. The
ant was just in state s, and has just transi-
tioned to state s’ . From there the ant may
transition to any state s” ∈∈∈S” . Note that s is
also in S” .

If the model is deterministic, which we assume here but
is not required, then all values ofT(s′,a,s′′) are 1 or 0 and
we may instead think of a setS′′ as consisting of available
(neighboring) states to which the ant may transition froms′:

Up(s
′) = R(s′)+ γ max

s′′∈S′′
Up(s

′′) (1)

The value ofγ can be constant, but we chose to make it
smaller for diagonal transitions than for other ones to re-
flect the slightly longer distance when moving diagonally.

The ant then must choose an action to perform. With
some probability1, ants choose a completely random action:
this ensures that all states in the environment are sooner or
later visited. In the rest of the cases, the ant transitions to the
state with the highest concentration of a given pheromone:

s′ = argmax
s′′∈S′′

Up(s
′′) (2)

However, the ant will usually also updatedifferent
pheromones than the one being used for transitioning. Thus
while the ant is following one gradient, at the same time it
may be building up different gradients.

An example here may be useful in showing how these
rules produce a trail between a nest and a food source
of unknown location. In this example, we will use two
pheromones:pfood increases with proximity to the food
source, andpnest increases with proximity to the nest. An
ant may be in one of two internal states: either it is look-
ing for food or it is returning to the nest laden with food.
When the ant reaches its goal, it receives a positive reward;
after updating the pheromone at the goal state, the ant then

1 We used exploration rate probabilities of 10% in most stationary en-
vironments, but as high as 30% or even 40% in the dynamic environ-
ments.
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Figure 2. Foraging sequence with two obstacles. Nest is in bo ttom right quadrant, and food source
is in top left quadrant. (1) Ants leave the nest while deposit ing the to-nest pheromone. (2) Ants dis-
cover the food source, and begin return to nest along the to-n est pheromone while depositing the
to-food pheromone. (3) Trail is established (4) All ants are now engaged. (5) Ants perform trail opti-
mization.

switches to the alternative internal state. As the ants start
from the nest, they also receive an initial maximal reward to
updatepnest.

The ants set up gradients to the nest and to the food in the
following way. If it is searching, then an ant updates (de-
posits)pnest using Equation 1; but transitions using a gra-
dient towards food, that is, usingpfood with Equation 2.
The ant updates the nest pheromone because it is essentially
building a gradient towards from the nest while searching
for the food.

When the ant is laden with food, its usage of pheromones
flip-flops. Now, Equation 1 usespfood, and Equation 2 uses
pnest. This causes the ant to follow the gradient back to the
nest, while simultaneously depositing a gradient towards the
food source for other ants to follow. Figure 2 shows the pro-
cess of discovery, trail development, and optimization in
this algorithm.

There are other utility-update possibilities. Equation 3
below, which bears a similarity to those used in TD-
learning, is also fairly effective:

Up(s
′) = max(Up(s

′),(1−α)Up(s
′)+ α(R(s′)+ γUp(s))

(3)

γ andα are learning rate constants between 0 and 1. While
this equation is not as efficient as Equation 1, it has the ben-
efit of not requiring the ant to know any state utility values
except fors – which it has just visited – ands′ – where it
is currently located. This equation appears backwards when
compared to traditional TD-learning equations, which up-
dateU(s) based onU(s′) rather than the other way around.
It is the symmetry of the model that enables us to use such
“backward” looking algorithms: the ant can now draw a gra-
dient as it movesawayfrom the reinforcement rather than
having to build one up through repeated movestowardsthe
expected reinforcement. This results in a dramatic improve-

ment in efficiency, as it avoids the need for repeated back-
ups.

In this sense we think of Equation 3 as a “forward updat-
ing” algorithm, rather than the “backup updating” of rein-
forcement learning. Interestingly, Equation 1 automatically
performsboth forms of updating, which is why we believe
it to be more efficient than Equation 3.

Domain-specific ImprovementsIn some cases (including
foraging) ants may reasonably build upboth gradients at
the same time, one using the algorithms discussed earlier,
and the other using “backup updating” as in reinforcement
learning. For example, while searching for food the ant can
build up a gradient to the nest using the algorithms dis-
cussed earlier; and build up a gradient to the nest using
backup.

As it does both forward updatingandbackup updating,
Equation 1 may be used to update both pheromones in ques-
tion. But when it comes to using Equation 3, things are more
complicated. Suppose the ant has just left the nest, and it is
currently searching for the food source. When transition-
ing from states to s′, we can use Equation 3 to update the
amounts of nest pheromones at states′ based on the amount
of nest pheromone at states. As for the food pheromones,
we can use the a similar formula obtained by swappings
ands′:

Up(s) = max(Up(s),(1−α)Up(s)+α(R(s)+γUp(s
′)) (4)

This equation is essentially a slight modification of TD-
learning. The need for this separate equation is due to the
fact that while Equation 1 uses the utilities of all nearby
states to update the utility of a single state, Equations 3 and
4 only use a single sampled state for this update. In our pre-
vious example, while searching for the food source, the ant
transitioned from states to s′. Hence it is likely that on av-
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Figure 3. Foraging sequence with predefined suboptimal path , showing local path optimization. With
higher exploration rate, the foraging trail is thicker, bec ause many ants slightly deviate from it. In the
end, more exploration helps straighten the path quicker to a n optimal one.

erage states is closer to the nest, whiles′ is closer to the
food source. Therefore Equation 3 should propagate util-
ity from s′ to s, while Equation 4 should propagate utility
from s to s′.

4. Experiments

Using these update and transition rules we have pro-
duced self-optimizing trail behaviors in domains which
have (1) Obstacles, (2) Dynamically changing food or nest
locations, and (3) Multiple waypoints. Experiments were
performed on the MASON multi-agent simulator [11].

Obstacles and Trail OptimizationFigure 2 presents an ex-
ample of foraging trails using Equation 1. The nest is lo-
cated in the bottom-right area of the environment, and two
obstacles separate it from the food source. As the ants ex-
plore, they find the food source and start marking trails con-
necting it to the nest. Later, all ants are attracted to this
marked foraging trail, and they are all repeatedly move be-
tween the nest and the food source. Ants will often discover
alternative routes, such as all the way over the top obsta-
cle, but will eventually discard these routes in favor of the
optimal path.

The “fingers” appearing to emanate from the nest and
the food source are harmless artifacts of the square environ-
ment and our inclusion of “backup updating” as a domain-
specific improvement. If an ant continues to explore, he

may never find any pheromone and may continue to ex-
plore outward. In our square environment such ants usually
find themselves stuck near corners. To compensate for this,
after some period we caused the ants to become “bored”
and follow their own gradient back to their start location
to try again. As the ants return, and discover a working
pheromone trail, they would perform sample backups near
the nest along the trail, building up the “fingers”.

For the experiments presented in Figure 3, we used
pheromones to mark a clearly suboptimal foraging trail.
The ants use it to initially locate the food source, but later
straighten it until optimal. This shows that the foraging be-
haviors proposed in this paper lead to an additional emer-
gent collective hill-climbing process to improve the forag-
ing trail. Note that the higher the exploration rate, the more
rapidly the ants optimize the trail.

Adaptation to Dynamic ChangesDynamism requires that
the ants are capable of forgetting old information. This can
be achieved through gradual pheromone evaporation and
diffusion in combination with the algorithms described ear-
lier. Figure 4 shows the application of the two foraging al-
gorithms (one using Equation 1, and the other using Equa-
tions 3 and 4). The nest is located in the lower area of the
map, while the food source moves from right to left in the
upper area. As expected, the algorithm using Equation 1 is
able to propagate the reinforcement information much bet-
ter, and its foraging trail is closer to optimality. The algo-
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Foraging behaviors using Equation 1

Foraging behaviors using Equations 3 and 4

Figure 4. Foraging from a moving food source: the nest is loca ted in the lower area, while the food
source moves from right to left in the upper area of the enviro nment.

rithm using Equations 3 and 4 is slower in propagating the
information, and its foraging trail is suboptimally curved.

In Figure 5 we also added an obstacle to the dynamic en-
vironment. The nest is in the center and the food source
moves around the nest clockwise in a wide circle. Interest-
ingly, the ants stretch well around the obstacle before fi-
nally adopting the straighter path: the problem stems from
the fact that the evaporation and diffusion of pheromones
have affected the encoded utilities to such a degree that ants
believe the straight trail to the nest is longer than the bent
one they currently follow. Once the difference in approxi-
mated utility for the two paths becomes similar, ants start
to explore the alternative, and immediately discover that its
utility is higher than expected. This leads to all ants rapidly
adopting the new foraging trail.

Multiple WaypointsThe inclusion of internal states in our
procedure allows for more sophisticated behaviors than just
there-and-back-again foraging trails. For example, with ad-
ditional states and pheromones, ants are able to achieve
tours between multiple waypoints, including ones with
intersecting paths. Figure 6 shows three-waypoint, four-
waypoint, and five-waypoint tours with intersections. This
more complex task is achieved through a series of automata
rules which can be described as follows. Each ant has as in-
ternal state a valueN indicating the most recent waypoint it
has visited, and a boolean flagF telling it whether or not to
return to waypointN upon discovery of the next waypoint
M in the sequence.N starts at 0 for all ants. When an ant is

at waypointN, it determines if there are any pheromones for
waypointM in the immediate vicinity. If so, it setsF to false
and follows those pheromones. If not, it begins searching
for waypointM, settingF to true, and when it has discov-
ered waypointM, it follows theN pheromone back again,
while painting theM pheromone. An ant that has just vis-
ited N and is currently searching forM updates both (and
only) theN andM pheromones. In essence, when ants dis-
cover a trail to the next waypoint, they paint a trail back to
the previous waypoint for the others to follow, if one has not
already been painted.

5. Conclusions and Future Work

Pheromones are an attractive model for large-scale col-
lective communication and coordination, and one which we
think deserves to be studied more in a multiagent engineer-
ing context. This paper introduced a novel foraging strategy
where agents (ants) use pheromones to actively mark how
to reach the nest and the food source. In a manner similar
to reinforcement learning, we view ant locations as external
states and ant pheromone concentrations as the utilities of
those states. Ant behaviors are essentially automata with in-
ternal state which perform actions and deposit pheromones
based on reward, internal state, and pheromone values in the
immediate neighborhood. With the addition of pheromone
evaporation and diffusion we are able to achieve trail opti-
mization in the presence of obstacles, dynamic adaptation
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Figure 5. The “Ant Clock”: trail optimization in presence of a dynamically changing food source and
an obstacle. Nest is in the center. (1) Food source is at 3 o’cl ock position, moving clockwise. (2) Food
source has moved to 7 o’clock position, and ants are bending a round obstacle to reach it. (3) Ants
achieve better trail. (4) Food source at 9 o’clock position.

Three Waypoint Tour Four Waypoint Tour Five Waypoint Tour
1 2 3

Figure 6. Tours with waypoints. Each path between two waypoi nts requires one unique pheromone
and two unique internal states. For the three-waypoint tour : (1) First segment of tour is established.
(2) Second waypoint (top right) is discovered and next segme nt is begun. (3) Trails are optimized.

to changing environments, and complexN-waypoint tours
rather than simple there-and-back-again foraging paths. We
believe both the formalism and the results to be a signifi-
cant improvement over the existing literature.

Furthermore, we strongly believe that this “pheromone
automata” model may produce yet more surprises: can ar-
tificial ants collectively solve maze or other search prob-
lems? Ferry objects around the environment? What is pos-
sible with the addition of local signaling or other communi-
cation modes? We also plan to extend this model to applica-
bility to real robots as future work, in the form of movable
beacons.
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