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Abstract. Disruption to supply chains can significantly influence the
operation of the world economy and this has been shown to permeate
and affect a large majority of countries and their citizens. We present
initial results from a model that explores the disruptions to supply chains
by a criminal agent and possible mitigation strategies. We construct a
model of a typical pharmaceutical manufacturing supply chain, which is
implemented via discrete event simulation. The criminal agent optimizes
its resource allocation to maximize disruption to the supply chain. Our
findings show criminal agents can cause cascading damage and exploit
vulnerabilities, which inherently exist within the supply chain itself. We
also demonstrate how basic mitigation strategies can efficaciously alleviate
this potential damage.
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1 Introduction and Background

Supply chains are a critical part of modern society and the operation of the
world economy. Recently, the COVID-19 pandemic has brought supply chains
and disruptions to them front and center. These disruptions have not only led to
massive shortages in critical goods such as semi-conductors, personal protective
equipment and medical supplies, but also impacted the roll out of vaccinations [3,
12].Though the effects of disruptions to supply chains by natural disasters have
been well studied (e.g., [6]), potential disruptions to their operations by nefarious
criminal agents remains an area of limited research [9)].

In this paper, we discuss our initial study of the effects of disruptions by
a criminal agent to pharmaceutical supply chains and ways to mitigate their
impact. We have developed a discrete event simulation model of a supply chain
for drug production drawn from real systems in the pharmaceutical industry
(e.g., [7,14,13]). Our ultimate goal is to build an agent-based model of a criminal
organization and use it to disrupt the supply chain, then develop mitigation
or protection strategies against this attack. As an initial step, we are using an
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optimizer to search for ways to maximize damage to the supply chain and analyze
its recovery. This paper discusses results from this initial approach.

Given the importance of supply chains, it should not be surprising that efficient
supply chain management has received a lot of attention, from mitigating the
negative impacts of natural disasters, such as the current COVID-19 pandemic,
and attacks by criminal or terrorist organisations (e.g., [6,9,3,17]). In order
to explore the effect of these different scenarios, supply chains have long been
modelled and studied via simulation (e.g., [5]). Much of this work has focused on
the supply chain itself, including the identification of potential bottlenecks, which
represent the most vulnerable points in the chain [10]. Supply chain optimization
is also another major research area. For example, in the pharmaceutical industry
efforts have been made to balance capacity and future demand [14]. There is also
a growing interest in disruptions to supply chains from external factors such as
criminal organisations (e.g., [2,9]). These disruptions include adulteration to key
materials, physical attacks or theft of key ingredients and cyber-attacks on the
software used in the logistics of the supply chain [7,14,17,13].

To the reader it might seem obvious that there exists a significant risk
stemming from supply chain disruptions to the operation of the global economy
and individual companies. However, it has been argued that up to 75% of
Fortune 500 companies, which include the major pharmaceutical companies,
remain unprepared to handle disruptions to their supply chains [18]. Having
basic mitigation strategies such as access to third party manufacturers and
secondary materials suppliers, in case of disruptions to delivery from your main
provider, have been shown to protect supply chains from disruptions [18,15]. In
the remainder of this paper we first present our supply chain simulation model
in Section 2, we then discuss the results (Section 3), which include mitigation
strategies. We then conclude with a summary and discussion of areas for further
work (Section 4).

2 Methodology

This paper proposes to analyze supply chains and their bottlenecks using various
computational modeling tools and technologies. We utilize discrete event simula-
tion to model a simplified pharmaceutical supply chain [7, 14] as our case study
(Section 2.1). We then simulate attacks (Section 2.2) on this supply chain by a
criminal agent (Section 2.3) whose aim is to maximize damage to its operations.
The supply chain is provided with mitigation strategies to protect itself from such
attacks. Details of our methodology are outlined in the following subsections.

2.1 Supply Chain Model

Our example pharmaceutical supply chain is illustrated in Figure 1. This model
represents a generic pharmaceutical company that purchases the materials re-
quired to produce drugs from a supplier pool (e.g., [7]). The resources available to
the supplier pool to meet these purchase orders are assumed to be infinite. Thus,
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Fig. 1. A simplified version of a typical pharmaceutical supply chain.

a request for a purchase order for any material from the pharmaceutical company
is always honored. There are three different types of materials the pharmaceutical
company requires to produce its drugs and deliver them to its distributors: two
separate ingredients that are combined to produce the actual drug and packaging
materials used to package the drugs once production is completed. Once pur-
chased, these materials are stored in separate storage facilities, all of which have
a maximum capacity of 1000 units. If the number of units of the materials in any
of the storage facilities falls below the critical threshold of 350 units, a restocking
request is sent to the supplier pool for 800 additional units. The time to fulfill
this restocking request is modeled using a uniform distribution between 80 and
100 hours. It should be noted these numbers and several of the values chosen
below were arbitrarily chosen but mimic the basic principles and dynamics seen
within supply chains. In future work, these values could be parameterized from
real-world data.

Once the materials arrive at their respective storage facilities, they are sep-
arated into batches of 20 units and sent for testing, which is the norm in such
supply chains [14]. The testing time for each batch is modeled using a uniform
distribution between 1 to 4 hours. For each batch, a certain number of units
fail at testing and are discarded as badput. The number of failed units in each
batch is also modeled using a uniform distribution between 1 and 6 units. After
testing, the two different ingredients are transferred to a pre-processing storage
facility which has a capacity of 1000 units. Two batches, each containing 10
units of the two ingredients, are then combined during the production phase
to produce 10 units of the actual drug. The time to produce these 10 units of
the drug is modeled using a uniform distribution between 1 to 3 hours. Once a
batch of drugs is produced, they are again sent for testing. The testing time for
a batch follows the same uniform distribution as for the original materials. In
each batch, the number of failed units is discarded as badput and is taken from
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Table 1. Type of disruption and its effect on the supply chain.

X-Code Disruption Type Effect on Supply Chain

X-1 Adulteration of materials secured Failure rate increases during testing
from the supplier pool

X-2 Physical attack on storage facilities Stored inventory destroyed at facility

X-3 Cyberattack in processing facilities Processing halted at facility

a uniform distribution between 1 and 3 units. The tested drugs are then stored
in the post-processing storage facility, which also has a capacity of 1000.

The next step in the supply chain is to package the drugs [7]. Batches, which
include 10 units of packaging material and 10 units of the completed drugs, are
packaged together and sent to the dispatch storage facility. The time for the
packaging of each batch is modeled using a uniform distribution between 1 to 3
hours. Similar to the production phase, batches of 10 units of the packed drug
are tested; units that fail testing are discarded from the batch as badput. The
units that pass testing are moved to the dispatch storage facility for collection by
the distributors. The dispatch storage facility has a capacity of 1000 units. Once
the inventory of packaged drugs at the dispatch storage facility exceeds 50 units,
a request is sent to the distributors to collect the drugs to be passed on to the
end customer. The time for this pickup request to be fulfilled is modeled using a
uniform distribution between 5 to 10 hours. For our simulation, once a drug has
been picked up by the distributors, the drug is considered sold and leaves the
system.

2.2 Disruptions

As noted before, supply chains can be disrupted in a number of ways. In this
paper, we model the effects of three different types of disruptions, which can
be executed by the criminal agent [7,17]. There are five separate points in the
supply chain, marked by a bomb symbol in Figure 1, where these disruptions
can occur. These disruptions are represented using X-Codes (i.e., X1), and the
type of disruption (X-Code) and its effect on the supply chain are detailed in
Table 1. The effect and duration of each of these disruptions at different points
in the supply chain are directly related to the resources allocated to the criminal
agent, which is detailed in the next section.

2.3 The Criminal Agent

In this paper, we model a generic and lone criminal agent who can directly
affect the supply chain via the disruptions outlined above. The design of the
criminal agent is detailed in Figure 2. The criminal agent is allocated a fixed
amount of resources, represented by a resource allocation vector (akin to money).
The total amount of resources available to the agent is set to 1500. These
resources can be allocated to disrupt the five points in the supply chain detailed
in Figure 1. The allocation of these resources is represented by a vector of length
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five (corresponding to the five potential disruption points). The first element in
this vector represents the number of resources allocated to disrupt the ingredient
one storage facility. Similarly, the other elements in the vector represent the
resources allocated to disrupt the other four disruption points.

This resource allocation vector is then multiplied by a set of weights, repre-
sented by the weight vector, which equals one. These weights are used to quantify
the effect on the supply chain from the resource allocation for each disruption at
the corresponding five disruption points. Additionally, a lower weight results in a
lower magnitude of disruption at each point. Thus, these weights can be changed
to make certain points in the supply chain more difficult to disrupt (i.e., a point
with heavy physical security). Once the resource allocation vector is multiplied
by the weight vector, we obtain a vector that represents the magnitude of each
disruption at the five different disruption points. The first three elements of this
vector represent a disruption to the storage facilities. They measure the number
of drugs destroyed or adulterated by a physical attack. The last two elements
represent a cyber or physical attack on the production and packaging facilities.
They disable the operation of the facilities and their effect is represented by the
number of hours either facility is unable to produce or package any drugs. Using
this design the criminal agent is able to directly interact and disrupt the operation
of the supply chain. This is executed by optimizing the resource allocation vector
while the elements of the weight vector remains fixed at 0.2.

2.4 Simulation and Optimization

The supply chain model was implemented using Python’s SimPy [11] library and
the optimization is carried out using the Optuna [1] library. Each simulation in
this study is run for 6 months, representing a total of 3600 hours of simulation
time. We measure the efficacy of the disruptions caused by the criminal agent
using the total number of drugs sold by the supply chain during the simulation.

We use an optimization algorithm to find how the criminal agent might apply
fixed resources, via the resource allocation vector, to attack the supply chain so
as to minimize the number of drugs sold during the simulation period. Because
the parameter space involved has no known derivative, we rely on the CMA-ES
algorithm to accomplish this task [4]. CMA-ES is part of a family of sample-
based optimization techniques collectively known as evolutionary algorithms [8].
Broadly speaking, CMA-ES starts with a sample of random candidate solutions
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to optimize. It then iteratively assesses the quality of each candidate solution,
then performs resampling based on their quality to produce a new sample of
candidates. In CMA-ES, the resampling is done by fitting a multidimensional
Gaussian distribution over the samples warped according to their respective
quality. The new samples are then randomly sampled under the distribution. By
combining our supply chain model with our criminal agent, and by leveraging
CMA-ES, in what follows we attempt to identify the main bottlenecks and the
most vulnerable points in the pharmaceutical supply chain.

We also investigate the effects of adding mitigation strategies to the supply
chain. There are two types of standard mitigation strategies made available to
the supply chain, both based on using third-party suppliers or contractors [16].
For disruptions to the inventory storage facilities, when an attack destroys units
stored, the supply chain has access to a third party supplier to quickly re-stock
its goods. The restocking request is fulfilled at a faster rate than if secured from
its regular supplier. This restocking request is triggered if the inventory at a
point in the supply is depleted by amount 3X or greater than the average hourly
depletion rate. A depletion in inventory of this size is used by the supply chain
to determine an attack has occurred and a mitigation should be implemented.
The second set of mitigations involve the production and packaging facilities.
These mitigations are triggered when these facilities lie idle for more than 80
hours. This value is chosen since it is 4X greater than the max average idle
time across 500 simulations. Thus, if the facility lies idle for longer than this
time the supply chain assumes an attack has occurred. The mitigation involves
outsourcing production or packaging to a third party. An additional, time delay
is also added in order to model the extra time taken to transport the goods from
the pharmaceutical companies facilities to the third-part facility and return the
produced or packaged goods.

3 Results

In our first set of simulations, we explore the effect on the supply chain from a
disruption by the criminal agent where all its resources are focused on a single
disruption point. These simulations model a single disruption that occurs halfway
through the 6-month simulation period. These simulations allows us to ascertain
the weakest points in the supply chain. Figure 3 details representative sample
simulations for the baseline model, which is a simulation without any disruption,
and results for an attack at the five disruption points in the supply chain. It
charts the total weekly drug sales during the entire simulation period. The dotted
red line indicates the time the disruption took place. Correspondingly, Table 2
outlines the key statistics derived from running the simulations 500 times.

The first result of interest is the lag between the time the disruption occurs
and its effect on the weekly drug sales between the packaging materials facility and
the ingredient facilities. This lag is the due to the location of the facilities in the
supply chain. The ingredient facilities are located at the beginning of the chain,
thus the result of a disruption at these locations takes time to permeate through
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Fig. 3. Sample simulations for the baseline model, without any disruption, and attacks
at the five main disruption points in the supply chain.

the network. In contrast, a disruption to the packaging materials facility, which is
directly linked to the end of the supply chain, creates a more immediate and more
damaging effect. The magnitude of this effect is larger since the packaging material
facility also represents a bottleneck. Without access to packaging materials no
drugs can be packaged and sold.

Table 2. Key statistics for the baseline model, without any disruption, and attacks at
the five main disruption points in the supply chain.

Disruption Point Mean Drugs Sold Std. Dev. 99% Confidence Interval
Baseline 20947 211 [20971 - 20923]
Ingredient 1 Storage 20667 352 [20708 - 20626]
Ingredient 2 Storage 20635 392 [20680 - 20590]
Packaging Materials Storage 19358 276 [19390 - 19326]
Production Facility 19641 183 [19662 - 19620]
Packaging Facility 18283 158 [18301 - 18265]

It is also important to note that none of the 99% confidence intervals for the
average drugs sold for the disruptions overlap with the baseline. Thus, all the
disruptions implemented significantly affect the operation of the supply chain.
Furthermore, the most vulnerable point in the supply chain was identified as the
packaging facility. This is because it represents a bottleneck in the supply chain
and is located at the end point.

Next, we utilize CMA-ES to optimize the resource allocation vector of the
criminal agent (as discussed in Section 2.4). This allows us to not only analyze
the best way for the criminal agent to attack the supply chain, but also determine
whether causing multiple disruptions at the same time creates additional vulnera-
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Fig. 4. Summary statistics and sample simulations for CMA-ES optimized disruptions.

bilities and therefore does more damage. For consistency with the previous results,
we carry out this optimization at the same time as the attacks in the previous
simulations and then pass the timing of the attack as a further parameter to the
CMA-ES. This enables us to analyze whether there is an optimal time in the
simulation to mount an attack.

We also study the effect of multiple attacks on the supply chain at different
times using the same number of resources utilized for a single attack (i.e., 1500 as
discussed in Section 2.3). Specifically, we focus on two attacks with the aim being
to establish whether the first attack significantly weakens the supply chain so
that a second attack creates a cascading effect and thus causes more damage. The
results for 500 simulations is outlined in Figure 4. From the results (Figure 4) one
can observe that the optimal resource allocation derived from using the CMA-ES
optimizer allocates the majority of its resources to disrupting the packaging
facility. This again illustrates the point that there exist bottlenecks in supply
chains and bottlenecks further down the chain are the most vulnerable points.
The mean 99% confidence intervals for the drugs sold during the simulation when
the timing of the attack is fixed and optimized also do not overlap. Thus, we
demonstrate that optimizing the timing of disruptions does greater damage. It is
also clear from these results that distributing the resources of the criminal agent
over two separate attacks does result in generating additional vulnerabilities to
the supply chain and that there exists a cascading effect.

In our final set of experiments, we study the efficacy of mitigation strategies,
outlined in Section 2.4, our rationale being that many companies are not geared
towards supply chain disruptions [18]. However, our methodology could help
alleviate this. Specifically, we use the single attack model optimized via CMA-ES
with and without mitigation in place. The results for 500 simulations are detailed
in Figure 5. From these results, one can observe that having adequate mitigation
strategies in place protects the supply chain from disruptions. The mean 99%
confidence intervals also do not overlap; thus, this result is significant.
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Fig. 5. Summary statistics and sample simulations for CMA-ES optimized disruptions
with and without mitigation in place.

4 Summary and Outlook

In this paper we analyze the operations of a pharmaceutical supply chain and
the effects on it from disruptions by a single criminal agent. We demonstrate how
a supply chain can be effectively simulated via a discrete event simulation. We
then construct a single simple criminal agent with fixed resources whose goal is
to disrupt the supply chain. The design of the criminal agent allows it to interact
with the supply chain and attack and damage key points within it. By studying
the operation of the supply chain and using CMA-ES to optimize the criminal
agents resource allocation, we are able probe and identity the main bottlenecks
and weak points in the supply chain. This also allows us to discover the optimal
approach for a criminal agent to disrupt the supply chain and to optimize the
timing of its attacks. We also demonstrate how mounting multiple attacks on the
supply chain creates additional vulnerabilities and creates a cascading effect of
damage to its operations. Finally, we study the effects of utilizing basic mitigation
strategies to protect the supply chain from attacks. We find that these basic
strategies are effective in ameliorating the damage caused by attacks from the
criminal agent.

The effects and possible damage to supply chains from disruptions caused
by nefarious criminal agents remains an understudied area [15]. One of the
limitations in our approach is that we utilize a simplified version of a typical
pharmaceutical supply chain. Thus, implementing a more complex model would
further improve the analysis of the key aspects of our results. The complexity
and structure of the criminal agent can also be improved. Studying the typical
disruptions these criminal agents cause and adding probabilistic distributions
to these disruptions would be additionally informative. However, even using our
current approach we are able to demonstrate how bottlenecks and their locations
in the supply chain represent its most vulnerable points. We also show how
optimization approaches such as CMA-ES can be used to find optimal attack
strategies for a criminal agent and how these attacks can be timed to cause the
most damage to the supply chains operations. We also demonstrate how different
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mitigation strategies can be studied and implemented to protect the supply chain
from disruptions.
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