
Height Balance: AVL Trees

Definition:

An AVL tree is a binary search tree in which the heights of
the left and right subtrees of the root differ by at most 1 and
in which the left and right subtrees are again AVL trees.

With each node of an AVL tree is associated a balance
factor that is left higher, equal, or right higher according,
respectively, as the left subtree has height greater than, equal
to, or less than that of the right subtree.

History:

The name AVL comes from the discoverers of this method,
G. M. Adel’son-Vel’skiı̆ and E. M. Landis. The method dates
from 1962.

Convention in diagrams:

In drawing diagrams, we shall show a left-higher node by ‘/,’ a
node whose balance factor is equal by ‘−,’ and a right-higher
node by ‘\.’

Height Balance: AVL Trees Data Structures and Program Design In C++
Transp. 37, Sect. 10.4, Height Balance: AVL Trees 279  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

–

AVL trees

non-AVL trees

–

– –

–

–

–

–

–

–

–

–

–

–

– – – –

–

–

–

–

–

–

=

–

–

–

–

=

–
–

=

–

–

–

=

–

–

= =

–

E
xam

ples
of

A
V

L
trees

an
d

oth
er

bin
ary

trees
D

ata
S

tru
ctu

res
an

d
P

rogram
D

esign
In

C
+

+
T

ran
sp.38,S

ect.10.4,H
eigh

t
B

alan
ce:

A
V

L
T

rees
280


1999

P
ren

tice-H
all,In

c.,U
pper

S
addle

R
iver,N

.J.07458

C++ Conventions for AVL Trees

We employ an enumerated data type to record balance factors:

enum Balance factor { left higher, equal height, right higher };

AVL nodes are structures derived from binary search tree
nodes with balance factors included:

template <class Record>
struct AVL node: public Binary node<Record> {

// additional data member:
Balance factor balance;

// constructors:
AVL node();
AVL node(const Record &x);

// overridden virtual functions:
void set balance(Balance factor b);
Balance factor get balance() const;

};

Methods for balance factors:

template <class Record>
void AVL node<Record> :: set balance(Balance factor b)
{

balance = b;
}

template <class Record>
Balance factor AVL node<Record> :: get balance() const
{

return balance;
}

C++ Conventions for AVL Trees Data Structures and Program Design In C++
Transp. 39, Sect. 10.4, Height Balance: AVL Trees 281  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

Virtual Methods and Dummy Methods

A C++ compiler must reject a call such as left->get balance(), since
left might point to a Binary node that is not an AVL node. We resolve
this difficulty by including dummy versions of get balance() and
set balance() in the underlying Binary node structure.

The correct choice between the AVL version and the dummy
version of the method can only be made at run time, when the
type of the object *left is known. To allow this, we must declare Bi-
nary node versions of set balance and get balance as virtual methods;
since these are dummies, they need do nothing.

template <class Entry>
struct Binary node {
// data members:

Entry data;
Binary node<Entry> *left;
Binary node<Entry> *right;

// constructors:
Binary node();
Binary node(const Entry &x);

// virtual methods:
virtual void set balance(Balance factor b);
virtual Balance factor get balance() const;

};

Class declaration for AVL trees:

template <class Record>
class AVL tree: public Search tree<Record> {
public:

Error code insert(const Record &new data);
Error code remove(const Record &old data);

private: // Add auxiliary function prototypes here.
};

Virtual Methods and Dummy Methods Data Structures and Program Design In C++
Transp. 40, Sect. 10.4, Height Balance: AVL Trees 282  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

Insertions into an AVL tree

–

–

–

–

–

–

–

–

–

–

–

–

–

–

––– –

––

–

–

–
–––

–

–

–

–

–––

–

a

e

k

t

p v

m

k

a

e t

p v

m u

a

e

um

k

t

vph

k k

t e

k

t

e

k

t

v

––

––– a

e

k

t

p v

–

–

–

––

e

k

t

p v

k: t: e:

a:p:v:

m: u: h:

–

–

=

–

–

–

– –

–

–

–

– –

–

–

–

–

–

= –

– –

– –

–

k, m: k

m

u: k

m

u

k

m

u

k

m

u

vt

k

m

u

vt

p

t

k

p:t, v : Double
rotation

left

Rotate
left

m u

vp

–

Insertions into an AVL tree Data Structures and Program Design In C++
Transp. 41, Sect. 10.4, Height Balance: AVL Trees 283  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

Public Insertion Method

template <class Record>
Error code AVL tree<Record> :: insert(const Record &new data)
/* Post: If the key of new data is already in the AVL tree, a code of duplicate error

is returned. Otherwise, a code of success is returned and the Record
new data is inserted into the tree in such a way that the properties of an AVL
tree are preserved.

Uses: avl insert. */
{

bool taller; // Has the tree grown in height?
return avl insert(root, new data, taller);

}

Recursive Function Specifications

template <class Record>
Error code AVL tree<Record> ::

avl insert(Binary node<Record> * &sub root,
const Record &new data, bool &taller)

/* Pre: sub root is either NULL or points to a subtree of the AVL tree
Post: If the key of new data is already in the subtree, a code of duplicate error

is returned. Otherwise, a code of success is returned and the Record
new data is inserted into the subtree in such a way that the properties of
an AVL tree have been preserved. If the subtree is increased in height, the
parameter taller is set to true; otherwise it is set to false.

Uses: Methods of struct AVL node; functions avl insert recursively,
left balance, and right balance. */

Recursive Function Specifications Data Structures and Program Design In C++
Transp. 42, Sect. 10.4, Height Balance: AVL Trees 284  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

Recursive Insertion

{
Error code result = success;
if (sub root == NULL) {

sub root = new AVL node<Record>(new data);
taller = true;

}

else if (new data == sub root->data) {
result = duplicate error;
taller = false;

}

else if (new data < sub root->data) { // Insert in left subtree.
result = avl insert(sub root->left, new data, taller);
if (taller == true)

switch (sub root->get balance()) { // Change balance factors.
case left higher:

left balance(sub root);
taller = false; // Rebalancing always shortens the tree.
break;

case equal height:
sub root->set balance(left higher);
break;

case right higher:
sub root->set balance(equal height);
taller = false;
break;

}
}

Recursive Insertion Data Structures and Program Design In C++
Transp. 43, Sect. 10.4, Height Balance: AVL Trees 285  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

Recursive Insertion, Continued

else { // Insert in right subtree.
result = avl insert(sub root->right, new data, taller);
if (taller == true)

switch (sub root->get balance()) {
case left higher:

sub root->set balance(equal height);
taller = false;
break;

case equal height:
sub root->set balance(right higher);
break;

case right higher:
right balance(sub root);
taller = false; // Rebalancing always shortens the tree.
break;

}
}
return result;

}

Recursive Insertion, Continued Data Structures and Program Design In C++
Transp. 44, Sect. 10.4, Height Balance: AVL Trees 286  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

Rotations of an AVL Tree

= –

–

–

Rotate
left

Total height = h + 3 Total height = h + 2

h
h + 1

h + 1

root right_tree

root

right_tree

T3

T3 T2h

h

hT2

T1

T1

template <class Record>
void AVL tree<Record> :: rotate left(Binary node<Record> * &sub root)
/* Pre: sub root points to a subtree of the AVL tree. This subtree has a nonempty

right subtree.
Post: sub root is reset to point to its former right child, and the former sub root

node is the left child of the new sub root node. */
{

if (sub root == NULL || sub root->right == NULL) // impossible cases
cout << "WARNING: program error detected in rotate left" << endl;

else {
Binary node<Record> *right tree = sub root->right;
sub root->right = right tree->left;
right tree->left = sub root;
sub root = right tree;

}
}

Rotations of an AVL Tree Data Structures and Program Design In C++
Transp. 45, Sect. 10.4, Height Balance: AVL Trees 287  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

Double Rotation

h T4

T3T2

h T1

= root

right_tree–

h T4T3T2h T1

becomes

One of T2 or T3 has height h.
Total height = h + 3

Total height = h + 2

h – 1

root

sub_tree

right_tree

sub_tree

or
h

h – 1
or
h

The new balance factors for root and right tree depend on the pre-
vious balance factor for sub tree:

old sub tree new root new right tree new sub tree
− − − −
/ − \ −
\ / − −

Double Rotation Data Structures and Program Design In C++
Transp. 46, Sect. 10.4, Height Balance: AVL Trees 288  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

template <class Record>
void AVL tree<Record> ::

right balance(Binary node<Record> * &sub root)
/* Pre: sub root points to a subtree of an AVL tree, doubly unbalanced on the right.

Post: The AVL properties have been restored to the subtree.
Uses: Methods of struct AVL node; functions rotate right, rotate left. */

{
Binary node<Record> * &right tree = sub root->right;
switch (right tree->get balance()) {
case right higher: // single rotation left

sub root->set balance(equal height);
right tree->set balance(equal height);
rotate left(sub root); break;

case equal height: // impossible case
cout << "WARNING: program error in right balance" << endl;

case left higher: // double rotation left
Binary node<Record> *sub tree = right tree->left;
switch (sub tree->get balance()) {
case equal height:

sub root->set balance(equal height);
right tree->set balance(equal height); break;

case left higher:
sub root->set balance(equal height);
right tree->set balance(right higher); break;

case right higher:
sub root->set balance(left higher);
right tree->set balance(equal height); break;

}
sub tree->set balance(equal height);
rotate right(right tree);
rotate left(sub root); break;

}
}

Function to restore right balance Data Structures and Program Design In C++
Transp. 47, Sect. 10.4, Height Balance: AVL Trees 289  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

Removal of a Node

1. Reduce the problem to the case when the node x to be removed
has at most one child.

2. Delete x . We use a bool variable shorter to show if the height
of a subtree has been shortened.

3. While shorter is true do the following steps for each node p on
the path from the parent of x to the root of the tree. When
shorter becomes false, the algorithm terminates.

4. Case 1: Node p has balance factor equal. The balance factor
of p is changed according as its left or right subtree has been
shortened, and shorter becomes false.

5. Case 2: The balance factor of p is not equal, and the taller
subtree was shortened. Change the balance factor of p to
equal, and leave shorter as true.

6. Case 3: The balance factor of p is not equal, and the shorter
subtree was shortened. Apply a rotation as follows to restore
balance. Let q be the root of the taller subtree of p .

7. Case 3a: The balance factor of q is equal. A single rotation
restores balance, and shorter becomes false.

8. Case 3b: The balance factor of q is the same as that of p .
Apply a single rotation, set the balance factors of p and q to
equal, and leave shorter as true.

9. Case 3c: The balance factors of p and q are opposite. Ap-
ply a double rotation (first around q , then around p), set the
balance factor of the new root to equal and the other balance
factors as appropriate, and leave shorter as true.

Removal of a Node Data Structures and Program Design In C++
Transp. 48, Sect. 10.4, Height Balance: AVL Trees 290  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

p

T1 T2 T1 T2

h – 1

h – 2
or

h – 1

p

p p

T1 T2 T1 T2

h – 1

T1

T2 T3

T1
T2

T3

h – 1

h – 1 h – 1 h – 1

qp

q p

q

q

p

p

p

r

qq

p

T1

T2
T3

T1 T2

T3

T1

T2 T3
T1

T2
T4T4

T3
h – 1h – 1

h – 1
h – 2

or
h – 1

h – 1

r

–

–

– –

–

– –

–

–

–

Height
unchanged

Height
reduced

Deleted

no rotations

single left
rotations

double
rotation

Deleted

h h h

h

Deleted

Deleted

h

h

Height
unchanged

Height
reduced

Deleted

Height
reduced

–

Case 3c

Case 3b

–

–
–

–

Case 3a

Case 2

Case 1

Sample cases, deletion from an AVL tree Data Structures and Program Design In C++
Transp. 49, Sect. 10.4, Height Balance: AVL Trees 291  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

dd

––

–

–

–

–

–

–

–

–

–––

–

–

–

–

–

–

–

–

–

–

–

–
–

–

–

–

–

–

–

–

–

–

–

–

–

Initial:

Delete p :

Adjust
balance
factors

Rotate
left:

Double rotate
right around m :

c

d

a

b

e

g

nj

h

i

k

l

o r

t

u

s

p

m

f

dd

–––

–

–

–

–

–

–

–

–

–

c

d

a

b

e

g

j

h

i

k

l

f

–

–

–

–

–

–

–

n

o r

t

u

s

p

m

o

–

–

–

–

–

–

n

r

t

u

s

o

m

=

–––

–

–

–

= m

n

s

o

r

u

– t

j

t

m

s

uo

k

l

ra

b

c

d

f

g

h

i

e

n

–

Example of deletion from an AVL tree Data Structures and Program Design In C++
Transp. 50, Sect. 10.4, Height Balance: AVL Trees 292  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

Analysis of AVL Trees

The number of recursive calls to insert a new node can be as
large as the height of the tree.

At most one (single or double) rotation will be done per inser-
tion.

A rotation improves the balance of the tree, so later insertions
are less likely to require rotations.

It is very difficult to find the height of the average AVL tree,
but the worst case is much easier. The worst-case behavior of
AVL trees is essentially no worse than the behavior of random
search trees.

Empirical evidence suggests that the average behavior of AVL
trees is much better than that of random trees, almost as good
as that which could be obtained from a perfectly balanced tree.

Analysis of AVL Trees Data Structures and Program Design In C++
Transp. 51, Sect. 10.4, Height Balance: AVL Trees 293  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

Worst-Case AVL Trees

To find the maximum height of an AVL tree with n nodes, we
instead find the minimum number of nodes that an AVL tree
of height h can have.

Let Fh be such a tree, with left and right subtrees Fl and
Fr . Then one of Fl and Fr , say Fl , has height h − 1 and the
minimum number of nodes in such a tree, and Fr has height
h − 2 with the minimum number of nodes.

These trees, as sparse as possible for AVL trees, are called
Fibonacci trees.

–

– – –

–

–

–

–

–

– –

–
–

–

–

–

– –

–

–

–

–

––

–

F1

F2

F3

F4

Worst-Case AVL Trees Data Structures and Program Design In C++
Transp. 52, Sect. 10.4, Height Balance: AVL Trees 294  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

Analysis of Fibonacci Trees

If we write |T | for the number of nodes in a tree T , we then
have the recurrence relation for Fibonacci trees:

|Fh| = |Fh−1| + |Fh−2| + 1,

where |F0| = 1 and |F1| = 2.

By the evaluation of Fibonacci numbers in Section A.4,

|Fh| + 1 ≈ 1√
5

[
1 + √

5

2

]h+2

Take the logarithms of both sides, keeping only the largest
terms:

h ≈ 1.44 lg |Fh|.
The sparsest possible AVL tree with n nodes has height about
1.44 lg n compared to:

A perfectly balanced binary search tree with n nodes has
height about lg n.

A random binary search tree, on average, has height about
1.39 lg n.

A degenerate binary search tree has height as large as n.

Hence the algorithms for manipulating AVL trees are guar-
anteed to take no more than about 44 percent more time than
the optimum. In practice, AVL trees do much better than this
on average, perhaps as small as lg n + 0.25.

Worst-Case AVL Trees Data Structures and Program Design In C++
Transp. 53, Sect. 10.4, Height Balance: AVL Trees 295  1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458

