
1

Floating Point Arithmetic

CS 365

Floating-Point

What can be represented in N bits?
• Unsigned 0 to 2N

• 2s Complement -2N-1 to 2N-1 - 1
• But, what about?

– very large numbers?
9,349,398,989,787,762,244,859,087,678

– very small number?
0.0000000000000000000000045691

– rationals 2/3
– irrationals
– transcendentals e, π

2

2

Floating Point

• We need a way to represent
– numbers with fractions, e.g., 3.1416
– very small numbers, e.g., .000000001

– very large numbers, e.g., 3.15576 × 109

• Representation:
– sign, exponent, significand: (–1)sign × significand × 2exponent

– more bits for significand gives more accuracy
– more bits for exponent increases range

• IEEE 754 floating point standard:
– single precision: 8 bit exponent, 23 bit significand
– double precision: 11 bit exponent, 52 bit significand

Recall Scientific Notation

6.02 x 10 1.673 x 10
23 -24

exponent

radix (base)Mantissa

decimal point

Sign, magnitude

Sign, magnitude

IEEE F.P. ± 1.M x 2e - 127

• Issues:
– Arithmetic (+, -, *, /)
– Representation, Normal form
– Range and Precision
– Rounding
– Exceptions (e.g., divide by zero, overflow, underflow)
– Errors

3

IEEE 754 floating-point standard

• Leading “1” bit of significand is implicit

• Exponent is “biased” to make sorting easier
– all 0s is smallest exponent all 1s is largest
– bias of 127 for single precision and 1023 for double precision
– summary: (–1)sign × (1+significand) × 2exponent – bias

• Example:

– decimal: -.75 = -3/4 = -3/22

– binary: -.11 = -1.1 x 2-1

– floating point: exponent = 126 = 01111110
– IEEE single precision: 10111111010000000000000000000000

IEEE 754 Standard
Representation of floating point numbers in IEEE 754 standard:

single precision
1 8 23

sign

exponent:
bias 127
binary integer

mantissa:
sign + magnitude, normalized
binary significand w/ hidden
integer bit: 1.M

actual exponent is
e = E - 127

S E M

N = (-1) 2 (1.M)
S E-127

0 < E < 255

0 = 0 00000000 0 . . . 0 -1.5 = 1 01111111 10 . . . 0

Magnitude of numbers that can be represented is in the range:

2
-126

(1.0) to 2 127 (2 - 2-23)

which is approximately:

1.8 x 10 -38 to 3.40 x 10 38

4

Floating Point Complexities

• Operations are somewhat more complicated
• In addition to overflow we can have “underflow”
• Accuracy can be a big problem

– IEEE 754 keeps two extra bits, guard and round
– four rounding modes
– positive divided by zero yields “infinity”
– zero divide by zero yields “not a number”
– other complexities

• Implementing the standard can be tricky
• Not using the standard can be even worse

– see text for description of 80x86 and Pentium bug!

Floating Point Addition Example

1. Allign decimal point of number with smaller exponent
1.610 × 10-1 = 0.161 × 100 = 0.0161 × 101

Shift smaller number to right
2. Add significands

9.999
0.016

10.015 SUM = 10.015 × 101

NOTE: One digit of precision lost during shifting. Also sum is not normalized
3. Shift sum to put it in normalized form 1.0015 × 102

4. Since significand only has 4 digits, we need to round the sum
SUM = 1.002 × 102

NOTE: normalization maybe needed again after rounding,
e.g, rounding 9.9999 you get 10.000

Example: Add 9.999 × 101 and 1.610 × 10-1 assuming 4 decimal digits

5

Done

2. Add the significands

4. Round the significand to the appropriate
number of bits

Still normalized?

Start

Yes

No

No

YesOverflow or
underflow?

Exception

3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left

and decrementing the exponent

1. Compare the exponents of the two numbers.
Shift the smaller number to the right until its
exponent would match the larger exponent

0 10 1 0 1

Control

Small ALU

Big ALU

Sign Exponent Significand Sign Exponent Significand

Exponent
difference

Shift right

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or
decrement

0 10 1

Shift smaller
number right

Compare
exponents

Add

Normalize

Round

6

Accurate Arithmetic – Guard & Round bits

• IEEE 754 standard specifies the use of 2 extra bits on the right during
intermediate calculations – Guard bit and Round bit

• Example: Add 2.56 × 100 and 2.34 × 102 assuming 3 significant digits
and without guard and round bits

2.56 × 100 = 0.0256 × 102

2.34
0.02
2.36 × 102

• With guard and round bits
2.34
0.0256
2.3656 × 102

ROUND 2.37×100

Chapter Four Summary

• Computer arithmetic is constrained by limited precision
• Bit patterns have no inherent meaning but standards do exist

– two’s complement
– IEEE 754 floating point

• Computer instructions determine “meaning” of the bit patterns
• Performance and accuracy are important so there are many

complexities in real machines (i.e., algorithms and
implementation).

• Next class: we are ready to move on (and implement the
processor)

	Floating Point Arithmetic
	Floating-Point
	Floating Point
	Recall Scientific Notation
	IEEE 754 floating-point standard
	IEEE 754 Standard
	Floating Point Complexities
	Floating Point Addition Example
	Accurate Arithmetic – Guard & Round bits
	Chapter Four Summary

