
1

Chapter 4
The Von Neumann
Model

4-2

ACKNOWLEDGEMENT: This lecture
uses slides prepared by Gregory T.

Byrd, North Carolina State
University

2

4-3

The Stored Program Computer
1943: ENIAC

• Presper Eckert and John Mauchly -- first general electronic computer.
(or was it John V. Atanasoff in 1939?)

• Hard-wired program -- settings of dials and switches.
1944: Beginnings of EDVAC

• among other improvements, includes program stored in memory
1945: John von Neumann

• wrote a report on the stored program concept,
known as the First Draft of a Report on EDVAC

The basic structure proposed in the draft became known
as the “von Neumann machine” (or model).

• a memory, containing instructions and data
• a processing unit, for performing arithmetic and logical operations
• a control unit, for interpreting instructions

For more history, see http://www.maxmon.com/history.htm

4-4

Von Neumann Model
MEMORY

CONTROL UNIT

MAR MDR

IR

PROCESSING UNIT

ALU TEMP

PC

OUTPUT
Monitor
Printer
LED
Disk

INPUT
Keyboard
Mouse
Scanner
Disk

3

4-5

Memory
2k x m array of stored bits
Address

• unique (k-bit) identifier of location
Contents

• m-bit value stored in location

Basic Operations:
LOAD

• read a value from a memory location
STORE

• write a value to a memory location

•••

0000
0001
0010
0011
0100
0101
0110

1101
1110
1111

00101101

10100010

4-6

Interface to Memory
How does processing unit get data to/from memory?
MAR: Memory Address Register
MDR: Memory Data Register

To LOAD a location (A):
1. Write the address (A) into the MAR.
2. Send a “read” signal to the memory.
3. Read the data from MDR.

To STORE a value (X) to a location (A):
1. Write the data (X) to the MDR.
2. Write the address (A) into the MAR.
3. Send a “write” signal to the memory.

MEMORY

MAR MDR

4

4-7

Processing Unit
Functional Units

• ALU = Arithmetic and Logic Unit
• could have many functional units.

some of them special-purpose
(multiply, square root, …)

• LC-3 performs ADD, AND, NOT
Registers

• Small, temporary storage
• Operands and results of functional units
• LC-3 has eight registers (R0, …, R7), each 16 bits wide

Word Size
• number of bits normally processed by ALU in one instruction
• also width of registers
• LC-3 is 16 bits

PROCESSING UNIT

ALU TEMP

4-8

Input and Output
Devices for getting data into and out of computer
memory

Each device has its own interface,
usually a set of registers like the
memory’s MAR and MDR

• LC-3 supports keyboard (input) and monitor (output)
• keyboard: data register (KBDR) and status register (KBSR)
• monitor: data register (DDR) and status register (DSR)

Some devices provide both input and output
• disk, network

Program that controls access to a device is
usually called a driver.

INPUT
Keyboard
Mouse
Scanner
Disk

OUTPUT
Monitor
Printer
LED
Disk

5

4-9

Control Unit
Orchestrates execution of the program

Instruction Register (IR) contains the current instruction.
Program Counter (PC) contains the address
of the next instruction to be executed.
Control unit:

• reads an instruction from memory
the instruction’s address is in the PC

• interprets the instruction, generating signals
that tell the other components what to do

an instruction may take many machine cycles to complete

CONTROL UNIT

IRPC

4-10

Instruction Processing

Decode instructionDecode instruction

Evaluate addressEvaluate address

Fetch operands from memoryFetch operands from memory

Execute operationExecute operation

Store resultStore result

Fetch instruction from memoryFetch instruction from memory

6

4-11

Instruction
The instruction is the fundamental unit of work.
Specifies two things:

• opcode: operation to be performed
• operands: data/locations to be used for operation

An instruction is encoded as a sequence of bits.
(Just like data!)

• Often, but not always, instructions have a fixed length,
such as 16 or 32 bits.

• Control unit interprets instruction:
generates sequence of control signals to carry out operation.

• Operation is either executed completely, or not at all.

A computer’s instructions and their formats is known as its
Instruction Set Architecture (ISA).

4-12

Example: LC-3 ADD Instruction
LC-3 has 16-bit instructions.

• Each instruction has a four-bit opcode, bits [15:12].
LC-3 has eight registers (R0-R7) for temporary storage.

• Sources and destination of ADD are registers.

“Add the contents of R2 to the contents of R6,
and store the result in R6.”

7

4-13

Example: LC-3 LDR Instruction
Load instruction -- reads data from memory
Base + offset mode:

• add offset to base register -- result is memory address
• load from memory address into destination register

“Add the value 6 to the contents of R3 to form a
memory address. Load the contents of that
memory location to R2.”

4-14

Instruction Processing: FETCH
Load next instruction (at address stored in PC)
from memory
into Instruction Register (IR).

• Copy contents of PC into MAR.
• Send “read” signal to memory.
• Copy contents of MDR into IR.

Then increment PC, so that it points to
the next instruction in sequence.

• PC becomes PC+1.

EAEA

OPOP

EXEX

SS

FF

DD

8

4-15

Instruction Processing: DECODE
First identify the opcode.

• In LC-3, this is always the first four bits of instruction.
• A 4-to-16 decoder asserts a control line corresponding

to the desired opcode.

Depending on opcode, identify other operands
from the remaining bits.

• Example:
for LDR, last six bits is offset
for ADD, last three bits is source operand #2

EAEA

OPOP

EXEX

SS

FF

DD

4-16

Instruction Processing: EVALUATE ADDRESS
For instructions that require memory access,
compute address used for access.

Examples:
• add offset to base register (as in LDR)
• add offset to PC
• add offset to zero

EAEA

OPOP

EXEX

SS

FF

DD

9

4-17

Instruction Processing: FETCH OPERANDS
Obtain source operands needed to
perform operation.

Examples:
• load data from memory (LDR)
• read data from register file (ADD) EAEA

OPOP

EXEX

SS

FF

DD

4-18

Instruction Processing: EXECUTE
Perform the operation,
using the source operands.

Examples:
• send operands to ALU and assert ADD signal
• do nothing (e.g., for loads and stores) EAEA

OPOP

EXEX

SS

FF

DD

10

4-19

Instruction Processing: STORE RESULT
Write results to destination.
(register or memory)

Examples:
• result of ADD is placed in destination register
• result of memory load is placed in destination register
• for store instruction, data is stored to memory

write address to MAR, data to MDR
assert WRITE signal to memory

EAEA

OPOP

EXEX

SS

FF

DD

4-20

Changing the Sequence of Instructions
In the FETCH phase,
we increment the Program Counter by 1.

What if we don’t want to always execute the instruction
that follows this one?

• examples: loop, if-then, function call

Need special instructions that change the contents
of the PC.
These are called control instructions.

• jumps are unconditional -- they always change the PC
• branches are conditional -- they change the PC only if

some condition is true (e.g., the result of an ADD is zero)

11

4-21

Example: LC-3 JMP Instruction
Set the PC to the value contained in a register. This
becomes the address of the next instruction to fetch.

“Load the contents of R3 into the PC.”

4-22

Instruction Processing Summary
Instructions look just like data -- it’s all interpretation.

Three basic kinds of instructions:
• computational instructions (ADD, AND, …)
• data movement instructions (LD, ST, …)
• control instructions (JMP, BRnz, …)

Six basic phases of instruction processing:

F → D → EA → OP → EX → S
• not all phases are needed by every instruction
• phases may take variable number of machine cycles

	Chapter 4The Von Neumann Model
	The Stored Program Computer
	Von Neumann Model
	Memory
	Interface to Memory
	Processing Unit
	Input and Output
	Control Unit
	Instruction Processing
	Instruction
	Example: LC-3 ADD Instruction
	Example: LC-3 LDR Instruction
	Instruction Processing: FETCH
	Instruction Processing: DECODE
	Instruction Processing: EVALUATE ADDRESS
	Instruction Processing: FETCH OPERANDS
	Instruction Processing: EXECUTE
	Instruction Processing: STORE RESULT
	Changing the Sequence of Instructions
	Example: LC-3 JMP Instruction
	Instruction Processing Summary

