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Chapter 4
The Von Neumann 
Model
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The Stored Program Computer
1943: ENIAC

• Presper Eckert and John Mauchly -- first general electronic computer.
(or was it John V. Atanasoff in 1939?)

• Hard-wired program -- settings of dials and switches.
1944: Beginnings of EDVAC

• among other improvements, includes program stored in memory
1945: John von Neumann

• wrote a report on the stored program concept, 
known as the First Draft of a Report on EDVAC

The basic structure proposed in the draft became known
as the “von Neumann machine” (or model).

• a memory, containing instructions and data
• a processing unit, for performing arithmetic and logical operations
• a control unit, for interpreting instructions

For more history, see http://www.maxmon.com/history.htm
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Von Neumann Model
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Memory
2k x m array of stored bits
Address

• unique (k-bit) identifier of location
Contents

• m-bit value stored in location

Basic Operations:
LOAD

• read a value from a memory location
STORE

• write a value to a memory location

•••

0000
0001
0010
0011
0100
0101
0110

1101
1110
1111

00101101

10100010
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Interface to Memory
How does processing unit get data to/from memory?
MAR: Memory Address Register
MDR: Memory Data Register

To LOAD a location (A):
1. Write the address (A) into the MAR.
2. Send a “read” signal to the memory.
3. Read the data from MDR.

To STORE a value (X) to a location (A):
1. Write the data (X) to the MDR.
2. Write the address (A) into the MAR.
3. Send a “write” signal to the memory.

MEMORY

MAR MDR
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Processing Unit
Functional Units

• ALU = Arithmetic and Logic Unit
• could have many functional units.

some of them special-purpose
(multiply, square root, …)

• LC-3 performs ADD, AND, NOT
Registers

• Small, temporary storage
• Operands and results of functional units
• LC-3 has eight registers (R0, …, R7), each 16 bits wide

Word Size
• number of bits normally processed by ALU in one instruction
• also width of registers
• LC-3 is 16 bits

PROCESSING UNIT

ALU TEMP
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Input and Output
Devices for getting data into and out of computer 
memory

Each device has its own interface,
usually a set of registers like the
memory’s MAR and MDR

• LC-3 supports keyboard (input) and monitor (output)
• keyboard: data register (KBDR) and status register (KBSR)
• monitor: data register (DDR) and status register (DSR)

Some devices provide both input and output
• disk, network

Program that controls access to a device is 
usually called a driver.

INPUT
Keyboard
Mouse
Scanner
Disk

OUTPUT
Monitor
Printer
LED
Disk
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Control Unit
Orchestrates execution of the program

Instruction Register (IR) contains the current instruction.
Program Counter (PC) contains the address
of the next instruction to be executed.
Control unit:

• reads an instruction from memory 
the instruction’s address is in the PC

• interprets the instruction, generating signals 
that tell the other components what to do

an instruction may take many machine cycles to complete

CONTROL UNIT

IRPC
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Instruction Processing

Decode instructionDecode instruction

Evaluate addressEvaluate address

Fetch operands from memoryFetch operands from memory

Execute operationExecute operation

Store resultStore result

Fetch instruction from memoryFetch instruction from memory
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Instruction
The instruction is the fundamental unit of work.
Specifies two things:

• opcode: operation to be performed
• operands: data/locations to be used for operation

An instruction is encoded as a sequence of bits.  
(Just like data!)

• Often, but not always, instructions have a fixed length,
such as 16 or 32 bits.

• Control unit interprets instruction:
generates sequence of control signals to carry out operation.

• Operation is either executed completely, or not at all.

A computer’s instructions and their formats is known as its
Instruction Set Architecture (ISA).
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Example: LC-3 ADD Instruction
LC-3 has 16-bit instructions.

• Each instruction has a four-bit opcode, bits [15:12].
LC-3 has eight registers (R0-R7) for temporary storage.

• Sources and destination of ADD are registers.

“Add the contents of R2 to the contents of R6,
and store the result in R6.”
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Example: LC-3 LDR Instruction
Load instruction -- reads data from memory
Base + offset mode:

• add offset to base register -- result is memory address
• load from memory address into destination register

“Add the value 6 to the contents of R3 to form a
memory address.  Load the contents of that 
memory location to R2.”
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Instruction Processing: FETCH
Load next instruction (at address stored in PC) 
from memory
into Instruction Register (IR).

• Copy contents of PC into MAR.
• Send “read” signal to memory.
• Copy contents of MDR into IR.

Then increment PC, so that it points to 
the next instruction in sequence.

• PC becomes PC+1.

EAEA

OPOP

EXEX

SS

FF

DD
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Instruction Processing: DECODE
First identify the opcode.

• In LC-3, this is always the first four bits of instruction.
• A 4-to-16 decoder asserts a control line corresponding

to the desired opcode.

Depending on opcode, identify other operands 
from the remaining bits.

• Example:
for LDR, last six bits is offset
for ADD, last three bits is source operand #2

EAEA

OPOP

EXEX

SS

FF

DD
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Instruction Processing: EVALUATE ADDRESS
For instructions that require memory access,
compute address used for access.

Examples:
• add offset to base register (as in LDR)
• add offset to PC
• add offset to zero

EAEA

OPOP

EXEX

SS

FF

DD



9

4-17

Instruction Processing: FETCH OPERANDS
Obtain source operands needed to 
perform operation.

Examples:
• load data from memory (LDR)
• read data from register file (ADD) EAEA

OPOP

EXEX

SS

FF

DD
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Instruction Processing: EXECUTE
Perform the operation, 
using the source operands.

Examples:
• send operands to ALU and assert ADD signal
• do nothing (e.g., for loads and stores) EAEA

OPOP

EXEX

SS

FF

DD
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Instruction Processing: STORE RESULT
Write results to destination.
(register or memory)

Examples:
• result of ADD is placed in destination register
• result of memory load is placed in destination register
• for store instruction, data is stored to memory

write address to MAR, data to MDR
assert WRITE signal to memory

EAEA

OPOP

EXEX

SS

FF

DD
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Changing the Sequence of Instructions
In the FETCH phase,
we increment the Program Counter by 1.

What if we don’t want to always execute the instruction
that follows this one?

• examples: loop, if-then, function call

Need special instructions that change the contents 
of the PC.
These are called control instructions.

• jumps are unconditional -- they always change the PC
• branches are conditional -- they change the PC only if

some condition is true (e.g., the result of an ADD is zero)
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Example: LC-3 JMP Instruction
Set the PC to the value contained in a register.  This 
becomes the address of the next instruction to fetch.

“Load the contents of R3 into the PC.”
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Instruction Processing Summary
Instructions look just like data -- it’s all interpretation.

Three basic kinds of instructions:
• computational instructions (ADD, AND, …)
• data movement instructions (LD, ST, …)
• control instructions (JMP, BRnz, …)

Six basic phases of instruction processing:

F → D → EA → OP → EX → S
• not all phases are needed by every instruction
• phases may take variable number of machine cycles
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