
1

Communication in Distributed Systems: 
RPC/RMI

Communication in Dist. Systems 2

Motivation

❒ Sockets API ≡ send & recv calls ≡ I/O
❒ Remote Procedure Calls (RPC)

❍ Goal: to provide a procedural interface for 
distributed (i.e., remote) services

❍ To make distributed nature of service 
transparent to the programmer

• No longer considered a good thing
❒ Remote Method Invocation (RMI)

❍ RPC + Object Orientation
❍ Allows objects living in one process to invoke 

methods of an object living in another process



2

Communication in Dist. Systems 3

Middleware layers

Applications, services

Middleware
layers

request-reply protocol

marshalling and external data representation

UDP and TCP

RMI and RPC

Communication in Dist. Systems 4

Conventional Procedure Call

a) Parameter passing in a local procedure call: the stack 
before the call to read(fd,buf,bytes)

b) The stack while the called procedure is active



3

Communication in Dist. Systems 5

Remote Procedure Call

❒ Principle of RPC between a client and server program.

Communication in Dist. Systems 6

Remote Procedure Calls

❒ Remote procedure call (RPC) abstracts 
procedure calls between processes on 
networked systems.

❒ Stubs – client-side proxy for the actual 
procedure on the server.

❒ The client-side stub locates the server and 
marshalls the parameters.

❒ The server-side stub receives this 
message, unpacks the marshalled
parameters, and peforms the procedure on 
the server.



4

Communication in Dist. Systems 7

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Communication in Dist. Systems 8

Passing Value Parameters (1)

2-8



5

Communication in Dist. Systems 9

Passing Value Parameters (2)

a) Original message on the Pentium
b) The message after receipt on the SPARC
c) The message after being inverted. The little numbers in boxes 

indicate the address of each byte

Communication in Dist. Systems 10

Parameter Specification and Stub Generation

a) A procedure
b) The corresponding message.



6

Communication in Dist. Systems 11

Request-reply communication

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

Execute procedure

message
select procedure

sendReply

Communication in Dist. Systems 12

Writing a Client and a Server
The steps in writing a client and a server in DCE RPC 

(SUN RPC is similar)



7

Communication in Dist. Systems 13

Files interface in Sun XDR

const MAX = 1000;
typedef int FileIdentifier;
typedef int FilePointer;
typedef int Length;
struct Data {

int length;
char buffer[MAX];

};
struct writeargs {

FileIdentifier f;
FilePointer position;
Data data;

};

struct readargs {
FileIdentifier f;
FilePointer position;
Length length;

};

program FILEREADWRITE {
version VERSION {

void WRITE(writeargs)=1; 1
Data READ(readargs)=2; 2

}=2;
} = 9999;

See additional slides on client and server programs

Communication in Dist. Systems 14

Binding a Client to a Server

❒ Client-to-server binding in DCE.

2-15

NOTE: In SunRPC, you only have to register the service 
(not both service and endpoint). Each host runs its own 
binder process called portmapper



8

Communication in Dist. Systems 15

RMI

❒ RMI = RPC + Object-orientation
❍ Java RMI
❍ CORBA 

• Middleware that is language-independent
❍ Microsoft DCOM/COM+
❍ SOAP 

• RMI on top of HTTP

Communication in Dist. Systems 16

Interfaces in distributed systems

❒ Programs organized as a set of modules that 
communicate with one another via procedure 
calls/method invocations

❒ Explicit interfaces defined for each module in 
order to control interactions between modules

❒ In distributed systems, modules can be in 
different processes

❒ A remote interface specifies the methods of an 
object that are available for invocation by objects 
in other processes defining the types of the input 
and output arguments of each of them



9

Communication in Dist. Systems 17

Remote and local method invocations

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

Communication in Dist. Systems 18

A remote object and its remote interface

interface
remote

m1
m2
m3

m4
m5
m6

Data

implementation

remoteobject

{ of methods



10

Communication in Dist. Systems 19

The role of proxy and skeleton in remote 
method invocation

object A object Bskeleton
Request

proxy for B

Reply

CommunicationRemote Remote referenceCommunication
modulemodulereference module module

for B’s class
& dispatcher

remote
client server

Communication in Dist. Systems 20

Request-reply communication for RPC/RMI

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply



11

Communication in Dist. Systems 21

Operations of the request-reply protocol

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments)
sends a request message to the remote object and returns the reply. 
The arguments specify the remote object, the method to be invoked and the 
arguments of that method.

public byte[] getRequest ();
acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
sends the reply message reply to the client at its Internet address and port.

Communication in Dist. Systems 22

Request-reply message structure

messageType

requestId

objectReference

methodId

arguments

int   (0=Request, 1= Reply)

int

RemoteObjectRef

int or Method

array of bytes



12

Communication in Dist. Systems 23

Request-Reply protocol

❒ Issues in marshalling of parameters and 
results
❍ Input, output, Inout parameters
❍ Data representation
❍ Passing pointers? (e.g., call by reference in C)

❒ Distributed object references
❒ Handling failures in request-reply protocol

❍ Partial failure
• Client, Server, Network

Communication in Dist. Systems 24

CORBA CDR message

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1934}

0–3

4–7

8–11

12–15

16–19

20-23

24–27

5

"Smit"

"h___"

6

"Lond"

"on__"

1934

index in 
sequence of bytes 4 bytes

notes 
on representation

length of string

‘Smith’

length of string

‘London’

unsigned long



13

Communication in Dist. Systems 25

Java serialization

The true serialized form contains additional type markers; h0 and h1 are handles

Serialized values
Person

3

1934

8-byte version number

int year

5 Smith

java.lang.String
name:

6 London

h0

java.lang.String
place:

h1

Explanation

class name, version number

number, type and name of 
instance variables 

values of instance variables

Communication in Dist. Systems 26

RMI Programming 

❒ RMI software
❍ Generated by IDL compiler
❍ Proxy

• Behaves like remote object to clients (invoker) 
• Marshals arguments, forwards message to remote object,  

unmarshals results, returns results to client
❍ Skeleton

• Server side stub; 
• Unmarshals arguments, invokes method, marshals results 

and sends to sending proxy’s method
❍ Dispatcher

• Receives the request message from communication module, 
passes on the message to the appropriate method in the 
skeleton 

❒ Server and Client programs



14

Communication in Dist. Systems 27

RMI Programming

❒ Binder
❍ Client programs need a means of obtaining a remote 

object reference 
❍ Binder is a service that maintains a mapping from textual 

names to remote object references
❍ Servers need to register the services they are exporting 

with the binder
❍ Java RMIregistry, CORBA Naming service

❒ Server threads
❍ Several choices: thread per object, thread per invocation
❍ Remote method invocations must allow for concurrent 

execution

Communication in Dist. Systems 28

RPC/RMI systems

❒ RPC systems
❍ SUN RPC
❍ DCE RPC

❒ RMI systems
❍ CORBA
❍ DCOM
❍ Java RMI
❍ SOAP (Simple Object Access Protocol)

• HTTP is request-reply protocol
• XML for data representation



15

Communication in Dist. Systems 29

Java RMI

❒ Features
❍ Integrated with Java language + libraries

• Security, write once run anywhere, multithreaded
• Object orientation

❍ Can pass “behavior”
• Mobile code
• Not possible in CORBA, traditional RPC systems

❍ Distributed Garbage Collection
❍ Remoteness of objects intentionally not 

transparent

Communication in Dist. Systems 30

Remote Interfaces, Objects, and Methods

❒ Objects become remote by implementing a 
remote interface
❍ A remote interface extends the interface 
java.rmi.Remote

❍ Each method of the interface declares 
java.rmi.RemoteException in its throws clause 
in addition to any application-specific clauses



16

Communication in Dist. Systems 31

Creating distributed applications using RMI

1. Define the remote interfaces
2. Implement the remote objects
3. Implement the client (can be done anytime after 

remote interfaces have been defined)
4. Register the remote object in the name server 

registry
5. Generate the stub and client using rmic
6. Start the registry
7. Start the server
8. Run the client

Communication in Dist. Systems 32

Java Remote interfaces Shape and ShapeList

import java.rmi.*;
import java.util.Vector;
public interface Shape extends Remote {

int getVersion() throws RemoteException;
GraphicalObject  getAllState() throws RemoteException; 1

}
public interface ShapeList extends Remote {

Shape newShape(GraphicalObject g) throws RemoteException; 2
Vector allShapes() throws RemoteException;
int getVersion() throws RemoteException;

}



17

Communication in Dist. Systems 33

The Naming class of Java RMIregistry

void rebind (String name, Remote obj)
This method is used by a server to register the identifier of a remote 
object by name, as shown in  Figure 15.13, line 3. 

void bind (String name, Remote obj)
This method can alternatively be used by a server to register a remote 
object by name, but if the name is already bound to a remote object 
reference an exception is thrown.

void unbind (String name, Remote obj)
This method removes a binding.

Remote lookup(String name)
This method is used by clients to look up a remote object by name, as 
shown in Figure 15.15  line 1. A remote object reference is returned.

String [] list()
This method returns an array of Strings containing the names bound in 
the registry.

Communication in Dist. Systems 34

Java class ShapeListServer with main method

import java.rmi.*;
public class ShapeListServer{

public static void main(String args[]){
System.setSecurityManager(new RMISecurityManager());
try{

ShapeList aShapeList = new ShapeListServant(); 1
Naming.rebind("Shape List", aShapeList ); 2

System.out.println("ShapeList server ready");
}catch(Exception e) {
System.out.println("ShapeList server main " + e.getMessage());}

}
}



18

Communication in Dist. Systems 35

Java class ShapeListServant implements interface 
ShapeList

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;
import java.util.Vector;
public class ShapeListServant extends UnicastRemoteObject implements ShapeList {

private Vector theList; // contains the list of Shapes 1
private int version;

public ShapeListServant()throws RemoteException{...}
public Shape newShape(GraphicalObject g) throws RemoteException { 2

version++;
Shape s = new ShapeServant( g, version); 3
theList.addElement(s);                
return s;

}
public  Vector allShapes()throws RemoteException{...}
public int getVersion() throws RemoteException { ... }

}

Communication in Dist. Systems 36

Java client of ShapeList

import java.rmi.*;
import java.rmi.server.*;
import java.util.Vector;
public class ShapeListClient{

public static void main(String args[]){
System.setSecurityManager(new RMISecurityManager());
ShapeList aShapeList = null;
try{

aShapeList  = (ShapeList) Naming.lookup("//bruno.ShapeList") ; 1
Vector sList = aShapeList.allShapes(); 2

} catch(RemoteException e) {System.out.println(e.getMessage());
}catch(Exception e) {System.out.println("Client: " + e.getMessage());}

}
}


	Communication in Distributed Systems: RPC/RMI
	Motivation
	Middleware layers
	Conventional Procedure Call
	Remote Procedure Call
	Remote Procedure Calls
	Steps of a Remote Procedure Call
	Passing Value Parameters (1)
	Passing Value Parameters (2)
	Parameter Specification and Stub Generation
	Request-reply communication
	Writing a Client and a Server
	Files interface in Sun XDR
	Binding a Client to a Server
	RMI
	Interfaces in distributed systems
	Remote and local method invocations
	A remote object and its remote interface
	The role of proxy and skeleton in remote method invocation
	Request-reply communication for RPC/RMI
	Operations of the request-reply protocol
	Request-reply message structure
	Request-Reply protocol
	CORBA CDR message
	Java serialization
	RMI Programming
	RMI Programming
	RPC/RMI systems
	Java RMI
	Remote Interfaces, Objects, and Methods
	Creating distributed applications using RMI
	Java Remote interfaces Shape and ShapeList
	The Naming class of Java RMIregistry
	Java class ShapeListServer with main method
	Java class ShapeListServant implements interface ShapeList
	Java client of ShapeList

