

Acknowledgement

These slides are based on presentations created and copyrighted by Prof. Daniel Menasce (GMU)

Types of Data

\square Qualitative (also called categorical)

- Data has states, categories, or levels that are mutually exclusive and exhaustive
- E.g. computers can be classified as laptops, handheld (PDAs), desktops, servers
> Categories can be ordered or unordered
- Quantitative (also called numerical)
- Discrete variables
> Continuous variables

Major Properties of Numerical Data

- Central Tendency: arithmetic mean, geometric mean, harmonic mean, median, mode.
\square Variability: range, inter-quartile range, variance, standard deviation, coefficient of variation, mean absolute deviation
\square Distribution: type of distribution

Measures of Central Tendency

- Arithmetic Mean

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

\square Based on all observations \square greatly affected by extreme values.

Effect of Outliers on Average

Median

Middle Value in an Ordered Set of Data.
If there are no ties, 50% of the values are smaller than the median and 50% are larger.

	1.1
1.4	1.1
1.8	1.4
1.8	1.9
1.9	2.3
2.3	$\mathbf{2 . 4}$
$\mathbf{2 . 4}$	2.8
2.8	2.1
3.1	3.1
3.4	3.4
3.8	3.8
Median	$\mathbf{2 . 4}$

Median

\square The median is unaffected by extreme values.
\square Obtaining the median:
> Odd-sized samples: $X_{(n+1) / 2}$

- Even-sized samples: $\frac{X_{n / 2}+X_{(n / 2)+1}}{2}$

Mode

Most frequently occurring value.
\square Mode may not exist.
\square Single mode distributions: unimodal.

- Distributions with two modes: bimodal.

unimodal

bimodal

Selecting between the mean, mode, and median

- Categorical data
> Use mode
\square Numerical data
> If the total of all observations is meaningful, use mean
- E.g. total execution time for five different queries
> If total not of interest, select median if distribution is skewed, o/w select mean

Geometric Mean

- Geometric Mean:

$$
\left(\prod_{i=1}^{n} X_{i}\right)^{1 / n}
$$

- Used when the product of the observations is of interest.
- Important when multiplicative effects are at play:
> Cache hit ratios at several levels of cache
> Percentage performance improvements between successive versions.
> Performance improvements across protocol layers.

Example of Geometric Mean

	Performance Improvement			
Test Number	Operating System	Middleware	Application	Avg. Performance Improvement per Layer
1	1.18	1.23	1.10	1.17
2	1.25	1.19	1.25	1.23
3	1.20	1.12	1.20	1.17
4	1.21	1.18	1.12	1.17
5	1.30	1.23	1.15	1.23
6	1.24	1.17	1.21	1.21
7	1.22	1.18	1.14	1.18
8	1.29	1.19	1.13	1.20
9	1.30	1.21	1.15	1.22
10	1.22	1.15	1.18	1.18
Averag	Pe Performance	Improvemen	t per Layer	1.20

Harmonic Mean

- The harmonic mean of a sample $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is defined as

$$
\ddot{x}=\frac{n}{1 / x_{1}+1 / x_{2}+\cdots+1 / x_{n}}
$$

- Weighted harmonic mean

$$
\ddot{x}=\frac{1}{w_{1} / x_{1}+w_{2} / x_{2}+\cdots+w_{n} / x_{n}}
$$

where w_{i}^{\prime} s are weights that add up to 1

- A harmonic mean or weighted harmonic mean should be used whenever an arithmetic mean can be justified for $1 / x_{i}\left(\right.$ or $\left.w_{i} / x_{i}\right)$

Selecting between arithmetic,

 geometric and harmonic means- Controversy (in late 1980s) over which mean to use to characterize the results of benchmarks consisting of a suite of programs
> See link to article on class home page
- Basic idea: should be guided by physical interpretation of number produced by benchmark
> Can be confusing if benchmark reports a ratio of two numbers, e.g. floating pt operations and execution time

Selecting between means (cont'd)

- If number produced by individual programs in the benchmark is proportional to execution time, then arithmetic mean makes sense to characterize the benchmark suite
\square If the inverse of the number produced by individual benchmarks has a physical interpretation, then harmonic mean is appropriate for characterizing the performance of the benchmark suite
- E.g. if benchmark reports MFLOPs rating of a program, i.e. number of floating pt ops divided by execution time

Summarizing variability

\square Indices of dispersion
> Range
> Variance or standard deviation
> 10- and 90-percentiles
> Semi-interquartile range
> Mean absolute deviation

Range, Variance, and Standard Deviation

\square Range: $X_{\text {max }}-X_{\text {min }}$
\square Variance:

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1} \quad \begin{aligned}
& \text { In Excel: } \\
& \mathrm{s}^{2}=\operatorname{VAR}(<\operatorname{array}>)
\end{aligned}
$$

- Standard Deviation:

In Excel:

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}
$$

s=STDEV (<array>)

Meanings of the Variance and Standard Deviation

\square The larger the spread of the data around the mean, the larger the variance and standard deviation.

- If all observations are the same, the variance and standard deviation are zero.
- The variance and standard deviation cannot be negative.
\square Variance is measured in the square of the units of the data.
- Standard deviation is measured in the same units as the data.

Coefficient of Variation

\square Coefficient of variation (COV) : s/ \bar{X}
> no units

S	29.50
Average	9.51
COV	3.10

COV not very meaningful if the random variable has a negative or zero mean

Quantiles (quartiles, percentiles) and midhinge

- Quartiles: split the data into quarters.
- First quartile (Q1): value of Xi such that 25% of the observations are smaller than Xi .
> Second quartile (Q2): value of Xi such that 50\% of the observations are smaller than Xi .
> Third quartile (Q3): value of Xi such that 75% of the observations are smaller than Xi .
- Percentiles: split the data into hundredths.
\square Midhinge:

$$
\text { Midhinge }=\frac{Q_{3}+Q_{1}}{2}
$$

Example of Quartiles

1.05
1.06
1.09
1.19
1.21
1.28
1.34
1.34
1.77
1.80
1.83
2.15
2.21
2.27
2.61
2.67
2.77
2.83
3.51
3.77
5.76
5.78
32.07
144.91

Q1	1.32
Q2	2.18
Q3	3.00
Midhinge	2.16

In Excel:
Q1=PERCENTILE(<array>,0.25)
Q2=PERCENTILE(<array>,0.5)
Q3=PERCENTILE(<array>,0.75)

Example of Percentile

| 1.05 |
| ---: | ---: |
| 1.06 |
| 1.09 |
| 1.19 |
| 1.21 |
| 1.28 |
| 1.34 |
| 1.34 |
| 1.77 |
| 1.80 |
| 1.83 |
| 2.15 |
| 2.21 |
| 2.27 |
| 2.61 |
| 2.67 |
| 2.77 |
| 2.83 |
| 3.51 |
| 3.77 |
| 5.76 |
| 5.78 |
| 32.07 |
| 144.91 |

\section*{| $80-$ percentile | 3.613002 |
| :--- | :--- |}

In Excel:
p-th percentile=PERCENTILE (<array>,p)
$(0 \leq \mathrm{p} \leq 1)$

Interquartile Range

Interquartile Range: $\quad Q_{3}-Q_{1}$
> not affected by extreme values.
\square Semi-Interquartile Range (SIQR)
$S I Q R=\left(Q_{3}-Q_{1}\right) / 2$
\square If the distribution is highly skewed, SIQR is preferred to the standard deviation for the same reason that median is preferred to mean

Coefficient of Skewness

\square Coefficient of skewness: $\frac{1}{n s^{3}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{3}$

$(\mathrm{X}-\mathrm{Xi})^{\wedge} 3$	
1.05	-606.1
1.06	-602.9
1.09	-596.1
1.19	-575.2
1.21	-571.8
1.28	-557.9
1.34	-546.4
1.34	-544.8
1.77	-464.5
1.80	-458.1
1.83	-453.1
2.15	-398.9
2.21	-388.8
2.27	-379.0
2.61	-328.5
2.67	-320.5
2.77	-306.6
2.83	-298.7
3.51	-215.9
3.77	-189.6
5.76	-52.9
5.78	-52.1
32.07	11476.6
144.91	2482007.1

Mean Absolute Deviation

 - Mean absolute deviation: $\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|$| | abs(Xi-Xbar) |
| ---: | ---: |
| 1.05 | 8.46 |
| 1.06 | 8.45 |
| 1.09 | 8.42 |
| 1.19 | 8.32 |
| 1.21 | 8.30 |
| 1.28 | 8.23 |
| 1.34 | 8.18 |
| 1.34 | 8.17 |
| 1.77 | 7.74 |
| 1.80 | 7.71 |
| 1.83 | 7.68 |
| 2.15 | 7.36 |
| 2.21 | 7.30 |
| 2.27 | 7.24 |
| 2.61 | 6.90 |
| 2.67 | 6.84 |
| 2.77 | 6.74 |
| 2.83 | 6.68 |
| 3.51 | 6.00 |
| 3.77 | 5.74 |
| 5.76 | 3.75 |
| 5.78 | 3.73 |
| 32.07 | 22.56 |
| 144.91 | 135.39 |

Average	9.51
Mean absolute deviation	13.16

Shapes of Distributions

Right-skewed distribution

Symmetric distribution

Left-skewed distribution

Selecting the index of dispersion

- Numerical data
> If the distribution is bounded, use the range
> For unbounded distributions that are unimodal and symmetric, use C.O.V.
> O/w use percentiles or SIQR

Box-and-Whisker Plot

\square Graphical representation of data through a five-number summary.

I/O Time (msec)
8.04
9.96
5.68
6.95
8.81
10.84
4.26
4.82
8.33
7.58
7.24
7.46
8.84
5.73
6.77
7.11
8.15
5.39
6.42
7.81
12.74
6.08

Five-number Summary	
Minimum	4.26
First Quartile	6.08
Median	7.35
Third Quartile	8.33
Maximum	12.74

Determining the Distributions of a Data Set

- A measured data set can be summarized by stating its average and variability
- If we can say something about the distribution of the data, that would provide all the information about the data
> Distribution information is required if the summarized mean and variability have to be used in simulations or analytical models
a To determine the distribution of a data set, we compare the data set to a theoretical distribution
> Heuristic techniques Graphical/Visual): Histograms, Q-Q plots
> Statistical goodness-of-fit tests: Chi-square test, Kolmogrov-Smirnov test

Comparing Data Sets

- Problem: given two data sets D1 and D2 determine if the data points come from the same distribution.
- Simple approach: draw a histogram for each data set and visually compare them.
- To study relationships between two variables use a scatter plot.
- To compare two distributions use a quantilequantile (Q-Q) plot.

Histogram

- Divide the range (max value - min value) into equalsized cells or bins.
- Count the number of data points that fall in each cell.
\square Plot on the y-axis the relative frequency, i.e., number of point in each cell divided by the total number of points and the cells on the x-axis.
- Cell size is critical!
> Sturge's rule of thumb
Given n data points, number of bins $k=\left\lfloor 1+\log _{2} n\right\rfloor$

Histogram

Data
-3.0
0.8
1.2
1.5
2.0
2.3
2.4
3.3
3.5
4.0
4.5
5.5

Bin	Frequency	Relative Frequency
$<=0$	1	8.3%
$0<x<=1$	1	8.3%
$1<x<=2$	3	25.0%
$2<x<=3$	2	16.7%
$3<x<=4$	3	25.0%
$4<x<=5$	1	8.3%
>5	1	8.3%

In Excel:
Tools -> Data Analysis -> Histogram

Scatter Plot

\square Plot a data set against each other to visualize potential relationships between the data sets.

- Example: CPU time vs. I/O Time
- In Excel: XY (Scatter) Chart Type.

Plots Based on Quantiles

- Consider an ordered data set with n values x_{1}, \ldots, x_{n}.
- If $p=(i-0.5) / n$ for $i \leq n$, then the p quantile $Q(p)$ of the data set is defined as

$$
Q(p)=Q([i-0.5] / n)=x_{i}
$$

$\square Q(p)$ for other values of p is computed by linear interpolation.
\square A quantile plot is a plot of $Q(p)$ vs. p.

Quantile-Quantile (Q-Q plots)

\square Used to compare distributions.
\square "Equal shape" is equivalent to "linearly related quantile functions."
$\square A$ Q-Q plot is a plot of the type $\left(Q_{1}(p), Q_{2}(p)\right)$ where $Q_{1}(p)$ is the quantile function of data set 1 and $Q_{2}(p)$ is the quantile function of data set 2 . The values of p are $(i-0.5) / n$ where n is the size of the smaller data set.

Q-Q Plot Example

i	$\mathrm{p}=(\mathrm{i}-0.5) / \mathrm{n}$	Data 1	Data 2
1	0.033	0.2861	0.5640
2	0.100	0.3056	0.8657
3	0.167	0.5315	0.9120
4	0.233	0.5465	1.0539
5	0.300	0.5584	1.1729
6	0.367	0.7613	1.2753
7	0.433	0.8251	1.3033
8	0.500	0.9014	1.3102
9	0.567	0.9740	1.6678
10	0.633	1.0436	1.7126
11	0.700	1.1250	1.9289
12	0.767	1.1437	1.9495
13	0.833	1.4778	2.1845
14	0.900	1.8377	2.3623
15	0.967	2.1074	2.6104

A Q-Q plot that is reasonably linear indicates that the two data sets have distributions with similar shapes.

Theoretical Q-Q Plot

- Compare one empirical data set with a theoretical distribution.
\square Plot $\left(x_{i}, \mathrm{Q}_{2}([i-0.5] / n)\right)$ where x_{i} is the [$i-0.5] / n$ quantile of a theoretical distribution ($\mathrm{F}^{-1}([i-0.5] / n)$) and $\mathrm{Q}_{2}([i-$ $0.5] / n$) is the i-th ordered data point.
\square If the $Q-Q$ plot is reasonably linear the data set is distributed as the theoretical distribution.

Examples of CDFs and Their Inverse

Functions
$\begin{array}{lll}\text { Exponential } & F(x)=1-e^{-x / a} & -a \operatorname{Ln}(1-u) \\ \text { Pareto } & F(x)=1-x^{-a} & \frac{1}{(1-u)^{1 / a}} \\ \text { Geometric } & F(x)=1-(1-p)^{x} & \left\lceil\frac{\operatorname{Ln}(u)}{\operatorname{Ln}(1-p)}\right.\end{array}$

Example of a Quantile-Quantile

 Plot- One thousand values are suspected of coming from an exponential distribution (see histogram in the next slide). The quantile-quantile plot is pretty much linear, which confirms the conjecture.

Data for Quantile-Quantile Plot

$\boldsymbol{q} \mathbf{q}$	$\mathbf{y i}$	$\mathbf{x i}$
0.100	0.22	0.21
0.200	0.49	0.45
0.300	0.74	0.71
0.400	1.03	1.02
0.500	1.41	1.39
0.600	1.84	1.83
0.700	2.49	2.41
0.800	3.26	3.22
0.900	4.31	4.61
0.930	4.98	5.32
0.950	5.49	5.99
0.970	6.53	7.01
0.980	7.84	7.82
0.985	8.12	8.40
0.990	8.82	9.21
1.000	17.91	18.42

What if the Inverse of the CDF Cannot be Found?

\square Use approximations or use statistical tables

- Quantile tables have been computed and published for many important distributions
\square For example, approximation for $N(0,1)$:

$$
x_{i}=4.91\left[q_{i}^{0.14}-\left(1-q_{i}\right)^{0.14}\right]
$$

\square For $N(\mu, \sigma)$ the x_{i} values are scaled as $\mu+\sigma x_{i}$ before plotting.

