Comparing Systems Using Sample Data

CS 700

1

Acknowledgement

These slides are based on presentations created and copyrighted by Prof. Daniel Menasce (GMU)

Interval Estimate

The interval estimate of the population parameter will have a specified confidence or probability of correctly estimating the population parameter.

<u>Properties of Point Estimators</u>

- □ Example of point estimator: sample mean.
- Properties:
 - Unbiasedness: the expected value of all possible sample statistics (of given size n) is equal to the population parameter.

$$E[\overline{X}] = \mu$$
$$E[s^2] = \sigma^2$$

- Efficiency: precision as estimator of the population parameter.
- Consistency: as the sample size increases the sample statistic becomes a better estimator of the population parameter.

5

Unbiasedness of the Mean

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$E[\overline{X}] = \frac{E\left[\sum_{i=1}^{n} X_i\right]}{n} = \frac{\sum_{i=1}^{n} E[X_i]}{n} = \frac{\sum_{i=1}^{n} \mu}{n} = \frac{n\mu}{n} = \mu$$

	Sample siz	re=	15		1.7%	of population
	Sample 1	Sample 2	Sample 3			
	0.0739	0.0202	0.2918			
	0.1407	0.1089	0.4696			
	0.1257	0.0242	0.8644			
	0.0432	0.4253	0.1494			
	0.1784	0.1584	0.4242			
	0.4106					
	0.1514					
	0.4542					
	0.0485					
	0.1705					
	0.3335					
	0.1772					
	0.0242					
	0.2183					_
	0.0274	0.4079	0.1142	E[sample]	Population	Error
Sample Average	0.1718	0.2467	0.3744	0.2643	0.2083	26.9%
Sample	0.1718	0.2407	0.3744	0.2043	0.2003	20.970
Variance	0.0180	0.0534	0.1204	0.0639	0.0440	45.3%
Efficiency						
(average)	18%	18%	80%			
Efficiency (variance)	59%	21%	173%			

	Sample size =		87		10% of population		n
	Sample 1	Sample 2	Sample 3				
	0.5725	0.3864	0.4627				
	0.0701	0.0488	0.2317				
	0.2165	0.0611	0.1138				
	0.6581	0.0881	0.0047				
	0.0440	0.5866	0.2438				
	0.1777	0.3419	0.0819				
	0.2380	0.1923	0.6581				
	0.0102			ſ	Population	0/ Dol Error	1
Samnla	0.0102 0.4325			Ī	Population	% Rel. Error	
Average		0.0445	0.2959	0.2206	Population 0.2083		
Average Sample	0.4325 0.2239	0.0445 0.2203	0.2959	0.2206	0.2083	5.9%	
Average Sample Variance	0.4325 0.2239	0.0445	0.2959		•	5.9%	
Average Sample Variance Efficiency	0.4325 0.2239	0.0445 0.2203	0.2959 0.2178 0.0440444	0.2206	0.2083	5.9%	
Sample Average Sample Variance Efficiency (average) Efficiency (variance)	0.4325 0.2239 0.0452688	0.0445 0.2203 0.0484057 5.7%	0.2959 0.2178 0.0440444 4.5%	0.2206	0.2083	5.9%	

<u>Confidence Interval Estimation of the</u> <u>Mean</u>

- Known population standard deviation.
- □ Unknown population standard deviation:
 - Large samples: sample standard deviation is a good estimate for population standard deviation. OK to use normal distribution.
 - Small samples and original variable is normally distributed: use t distribution with n-1 degrees of freedom.

9

Confidence Interval Estimation of the Mean

$$\Pr[c_1 \le \mu \le c_2] = 1 - \alpha$$

 (c_1,c_2) : confidence interval α : significance level (e.g., 0.05) 1- α : confidence coefficient (e.g., 0.95) $100(1-\alpha)$: confidence level (e.g., 95%)

 $100 (1 - \alpha)$ of the 100 samples include the population mean μ .

1

Central Limit Theorem

□ If the observations in a sample are independent and come from the same population that has mean μ and standard deviation σ then the sample mean for **large** samples has a normal distribution with mean μ and standard deviation σ/\sqrt{n} .

$$\overline{x} \sim N(\mu, \sigma / \sqrt{n})$$

□ The standard deviation of the sample mean is called the *standard error*.

Confidence Interval (large (n>30) samples)

• 100 $(1-\alpha)\%$ confidence interval for the population mean:

$$(\overline{x}-z_{1-\alpha/2}\frac{s}{\sqrt{n}},\overline{x}+z_{1-\alpha/2}\frac{s}{\sqrt{n}})$$

 \overline{x} : sample mean

s: sample standard deviation

n: sample size

 $z_{1-\alpha/2}$: (1- α /2)-quantile of a unit normal variate (N(0,1)).

Confidence Interval (small samples, normally distributed population)

• 100 $(1-\alpha)$ % confidence interval for the population mean:

$$(\overline{x}-t_{[1-\alpha/2;n-1]}\frac{s}{\sqrt{n}},\overline{x}+t_{[1-\alpha/2;n-1]}\frac{s}{\sqrt{n}})$$

 \overline{x} : sample mean

s: sample standard deviation

n: sample size

 $t_{[1-\alpha/2;n-1]}$: critical value of the *t* distribution with *n-1* degrees of freedom for an area of $\alpha/2$ for the upper tail.

Student's t distribution

$$t(v) \sim \frac{N(0,1)}{\sqrt{\chi^2(v)/v}}$$

v: number of degree of freedom.

 $\chi^2(v)$: chi-square distribution with v degrees of freedom. Equal to the sum of squares of v unit normal variates.

- the pdf of a t-variate is similar to that of a N(0,1).
- for v > 30 a t distribution can be approximated by N(0,1).

17

Confidence Interval (small samples)

- □ For samples from a normal distribution $N(\mu,\sigma^2)$, has a N(0,1) distribution and $(\overline{X} \mu)/(\sigma/\sqrt{n})$ has a chi-square distribution with n-1 degrees of freedom $(n-1)s^2/\sigma^2$
- □ Thus, $(\overline{X} \mu)/\sqrt{s^2/n}$ has a t distribution with n-1 degrees of freedom

Confidence Interval for the Variance

- □ If the original variable is normally distributed then the chi-square distribution can be used to develop a confidence interval estimate of the population variance.
- \Box The (1- α)% confidence interval for σ^2 is

$$\frac{(n-1)s^2}{\chi_U^2} \le \sigma^2 \le \frac{(n-1)s^2}{\chi_L^2}$$

 χ_L^2 : lower critical value of χ^2

 χ_U^2 : upper critical value of χ^2

Chi-square distribution

21

95% confidence interval for the population variance for a sample of size 100 for a N(3,2) population.

The population variance (4 in this case) is in the interval (3.6343, 6.362) with 95% confidence.

Confidence Interval for the Variance

If the population is not normally distributed, the confidence interval, especially for small samples, is not very accurate.

23

Confidence Interval for Proportions

- □ For categorical data:
 - E.g. file types {html, html, gif, jpg, html, pdf, ps, html, pdf ...}
 - > If n_1 of n observations are of type html, then the sample proportion of html files is $p = n_1/n$.
- \square The population proportion is π .
- \square Goal: provide confidence interval for the population proportion π .

Confidence Interval for Proportions

- □ The sampling distribution of the proportion formed by computing p from all possible samples of size n from a population of size N with replacement tends to a normal with mean π and standard error $\sigma_p = \sqrt{\frac{\pi(1-\pi)}{n}}$.
- \Box The normal distribution is being used to approximate the binomial. So, $n\pi \ge 10$

25

Confidence Interval for Proportions

 \Box The (1- α)% confidence interval for π is

$$(p-z_{1-\alpha/2}\sqrt{\frac{p(1-p)}{n}}, p+z_{1-\alpha/2}\sqrt{\frac{p(1-p)}{n}})$$

p: sample proportion.

n: sample size

 $z_{1-\alpha/2}$: (1- $\alpha/2$)-quantile of a unit normal variate (N(0,1)).

Confidence Interval for Proportions

One thousand entries are selected from a Web log. Six hundred and fifty correspond to gif files. Find 90% and 95% confidence intervals for the proportion of files that are gif files.

Comparing Alternatives

- □ Suppose you want to compare two cache replacement policies under similar workloads.
- Metric of interest: cache hit ratio.
- \square Types of comparisons:
 - > Paired observations
 - > Unpaired observations.

Example of Paired Observations

□ Six similar workloads were used to compare the cache hit ratio obtained under object replacement policies A and B on a Web server. Is A better than B?

Workload	Cache H		
	Policy A	A-B	
1	0.35	0.28	0.07
2	0.46	0.37	0.09
3	0.29	0.34	-0.05
4	0.54	-0.06	
5	0.32	0.10	
6	0.15	0.18	-0.03
	0.02000		
	Sample varia	0.00552	
	Sample stand	0.07430	

Example of Paired Observations

The interval includes zero, so we cannot say that policy A is better than policy B.

32

Inferences concerning two means

□ For large samples, we can statistically test the equality of the means of two samples by using the statistic

$$Z = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \sqrt{\frac{\sigma_2^2}{n_2}}}}$$

- Z is a random variable having the standard normal distribution
- We need to check if the confidence interval of Z at a given level includes zero
- > We can approximate the population variances above with sample variances when n_1 and n_2 are greater than 30

<u>Inferences concerning two means</u> (cont'd)

□ For small samples, if the population variances are unknown, we can test for equality of the two means using the t-statistic below, provided we can assume that both populations are normal with equal variances $\overline{X}_1 - \overline{X}_2$

 $t = \frac{\overline{X}_1 - \overline{X}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$

> t is a random variable having the t-distribution with n_1 + n_2 - 2 degrees of freedom and S_p is the square root of the pooled estimate of the variance of the two samples

$$S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}$$

35

<u>Inferences concerning two means</u> (cont'd)

- The pooled-variance t test can be used if we assume that the two population variances are equal
 - In practice, we can use it if one sample variance is less than 4 times the variance of the other sample
- ☐ If this is not true, we need another test
 - Smith-Satterthwaite test described in Jain (with some errors)

Unpaired Observations (t-test)

- 1. Size of samples for A and B: n_A and n_B
- 2. Compute sample means:

$$\overline{X}_A = \frac{1}{n_A} \sum_{i=1}^{n_A} X_{iA}$$

$$\overline{X}_B = \frac{1}{n_B} \sum_{i=1}^{n_B} X_{iB}$$

37

Unpaired Observations (t-test)

3. Compute the sample standard deviations:

$$S_A = \sqrt{\frac{\left(\sum_{i=1}^{n_A} x_{iA}^2\right) - n_A (\overline{x}_A)^2}{n_A - 1}}$$

$$S_{B} = \sqrt{\frac{\left(\sum_{i=1}^{n_{B}} x_{iB}^{2}\right) - n_{B} (\overline{x}_{B})^{2}}{n_{B} - 1}}$$

Unpaired Observations (t-test)

- 4. Compute the mean difference: $\bar{x}_a \bar{x}_b$
- 5. Compute the standard deviation of the mean difference: $s = \sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}$
- 6. Compute the effective number of degrees of freedom.

$$v = \frac{\left(s_a^2/n_a + s_b^2/n_b\right)^2}{\frac{1}{n_a - 1} \left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b - 1} \left(\frac{s_b^2}{n_b}\right)^2}$$

39

Unpaired Observations (t-test)

7. Compute the confidence interval for the mean difference:

$$(\overline{x}_a - \overline{x}_b) \pm t_{[1-\alpha/2;\nu]} \times S$$

8. If the confidence interval includes zero, the difference is not significant at $100(1-\alpha)\%$ confidence level.

Example of Unpaired Observations

■ Two cache replacement policies A and B are compared under similar workloads. Is A better than B?

Workload	Cache Hit Ratio			
	Policy A	Policy B		
1	0.35	0.49		
2	0.23	0.33		
3	0.29	0.33		
4	0.21	0.55		
5	0.21	0.65		
6	0.15	0.18		
7	0.42	0.29		
8		0.35		
9		0.44		
Mean	0.2657	0.4011		
St. Dev	0.0934	0.1447		

41

Example of Unpaired Observations

na	7		
nb	9		
mean diff	-0.135		
st.dev diff.	0.059776		
Eff. Deg. Freed.	15		
alpha	0.1	for	90% confidence interval
1-alpha/2	0.95		
t[1-alpha/2,v]	1.782287	•	In Excel: TINV(1-0.9,15)
90% Confidence II	nterval		III LACCI. 111(V(1-0.5,15)
lower bound	-0.24193		
upper bound	-0.02886		

At a 90% confidence level the two policies are not identical since zero is not in the interval. With 90% confidence, the cache hit ratio for policy A is smaller than that for policy B. So, policy B is better at that confidence level.

Approximate Visual Test

CIs do not overlap: A is higher than B

CIs overlap and mean of A is in B's CI:
A and B are similar

CIs overlap and mean of A is not in B's CI: need to do t-test

43

Example of Visual Test

Workload	Cache Hit Ratio		
	Policy A	Policy B	
1	0.35	0.49	
2	0.23	0.33	
3	0.29	0.33	
4	0.21	0.55	
5	0.21	0.65	
6	0.15	0.18	
7	0.42	0.29	
8		0.35	
9		0.44	
Mean	0.2657	0.4011	
St. Dev	0.0934	0.1447	

na nb 0.1 alpha for 1-alpha/2 0.95 Policy A Policy B t[1-alpha/2,v] 1.9432 1.8595 90% Confidence Interval 0.311 lower bound 0.197 upper bound 0.334 0.491

90% confidence interval

CIs overlap but mean of A is not in CI of B and vice-versa. Need to do a t-test.

Non-parametric tests

- □ The unpaired t-tests can be used if we assume that the data in the two samples being compared are taken from normally distributed populations
- □ What if we cannot make this assumption?
 - We can make some normalizing transformations on the two samples and then apply the t-test
 - Some non-parametric procedure such as the Wilocoxon rank sum test that does not depend upon the assumption of normality of the two populations can be used

45

One-sided Confidence Intervals

□ Useful to test the hypothesis that the mean is greater (or smaller) than a certain value.

$$\Pr[\mu \ge c_1] = 1 - \alpha$$

$$\Pr[\mu \le c_2] = 1 - \alpha$$

One-sided Confidence Intervals

$$(-\infty, \overline{x} + t_{[1-\alpha;n-1]} s / \sqrt{n})$$
$$(\overline{x} - t_{[1-\alpha;n-1]} s / \sqrt{n}, \infty)$$

For large samples, use z-values instead of t-values

Determining Sample Size

- □ Large samples imply high confidence.
- Large samples require more data collection effort.
- □ How to determine the sample size n to estimate the population parameter with accuracy r% and confidence level of 100 (1- α)%?

49

Determining the Sample Size for the Mean

- Perform a set of measurements to estimate the sample mean and the sample variance.
- Determine the sample size to obtain proper accuracy as follows:

$$\overline{x} \pm z \frac{s}{\sqrt{n}} = \overline{x} \pm \frac{\overline{x}r}{100}$$

$$\Rightarrow n = \left(\frac{100zs}{r\overline{x}}\right)^2$$

Determining the Sample Size for the Mean

□ A preliminary test shows that the sample mean of the response time is 5 sec and the sample standard deviation is 1.5. How many repetitions are needed to get the response time within 2% accuracy at 95% confidence level?

$$r = 2$$
 $\overline{x} = 5$ $s = 1.5$
 $z = 1.96$
 $n = \left(\frac{100 \times 1.96 \times 1.5}{2 \times 5}\right)^2 = 864.36$

865 repetitions would be Needed!

Determining the Sample Size for the Mean

Accuracy (r)	Confidence Level (1- alpha)	x	ø	Sample size
1	0.95	5	0.8	984
2	0.95	5	0.8	246
5	0.95	5	0.8	40
1	0.9	5	0.8	693
2	0.9	5	0.8	174
5	0.9	5	0.8	28

Hypothesis testing vs estimating confidence intervals

- Textbooks on statistics devote a chapter to hypothesis testing
 - > Example: Hypothesis test for a zero mean
 - Hypothesis test has a yes-no answer so either a hypothesis is accepted or rejected
 - Jain argues that confidence intervals provide more information
 - The difference between two systems has a confidence interval of (-100,100) vs a confidence interval of (-1,1)
 - In both cases, the interval includes zero but the width of the interval provides additional information

53

Computing Important Quantiles in Excel

```
z_{1-\alpha/2} = (1-\alpha/2)-quantile of a unit normal variate (N(0,1)):
= NORMINV (1-\alpha/2,0,1) = NORMSINV(1-\alpha/2)
Half-interval = CONFIDENCE (\alpha,\sigma,n)
```

```
t_{[1-\alpha/2;n-1]} = (1-\alpha/2)-quantile of t-variate with n-1 degrees of freedom = TINV(\alpha,n-1)
```

```
\chi_L^2: lower critical value of \chi^2 = CHIINV (1-\alpha/2,n-1)
```

 χ_U^2 : upper critical value of χ^2 = CHIINV ($\alpha/2$, n-1)