

	Actual	Situation
	H _o true	H _o false
Accept H _o	Correct decision Confidence=1-α	Type II Error: Pr[Type II]=β
Reject H _o	Type I Error P[Type I]=α	Correct Decision Power=1-β

<u>Critical regions for two-sided and one-sided alternative</u> <u>hypotheses</u>

Null hypothesis: $\mu = \mu_0$

Alternative hypothesis	Reject null hypothesis if:
$\mu < \mu_0$	Ζ < -z _α
$\mu > \mu_0$	$Z > z_{\alpha}$
μ ≠ μ ₀	$Z \leftarrow -z_{\alpha/2} \text{ or } Z > z_{\alpha/2}$

Note that the critical region for accepting the null hypothesis can be used to compute the (1- α)100% confidence intervals for the population mean μ , i.e. $(\overline{x} - z_{1-\alpha/2} \frac{s}{\sqrt{n}}, \overline{x} + z_{1-\alpha/2} \frac{s}{\sqrt{n}})$

Z Test of Hypothesis for the	Mear	1
Null Hypothesis	μ =	12.5
Level of Significance		0.05
Population Standard Deviat	ion	0.5
Sample Size		50
Sample Mean		12.3
Standard Error of the Mean		0.070710678
Z Test Statistic		-2.828427125
Two-Tailed	Test	
Lower Critical Value		-1.959961082
Upper Critical Value		1.959961082
<i>p</i> -Value		0.00467786
Reject the null hy	pothe	esis

Example

t = (12.3 - 12.35)/(0.5/√5) = -0.2236 α = 0.05, degrees of freedom = 4 t_{α/2} = 2.776 for 4 degrees of freedom In EXCEL, TINV(0.05,4) The t test statistic (-0.2236) is between the lower and upper critical values (i.e. -2.776 and 2.776)

So the null hypothesis should not be rejected.

Example of One-Tailed Test

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{12.35 - 12.3}{0.5 / \sqrt{50}} = 0.707$$
 Statistic

Critical value = NORMINV(0.05,0,1) = -1.645. Region of non-rejection: $Z \ge -1.645$. So, do not reject H_o. (Z exceeds critical value)

17

<u>One-tailed Test</u>

Lower Critical Value	-1.644853
Lower-Tail Test	•
7 Test Statistic	0 707106781
Standard Error of the Mean	0.070710678
Sample Mean	12.35
Sample Size	50
Population Standard Deviation	0.5
Level of Significance	0.05
Null Hypothesis μ=	12.3

Steps in Hypothesis Testing

- 1. State the null and alternative hypothesis.
- 2. Choose the level of significance α .
- 3. Choose the sample size n. Larger samples allow us to detect even small differences between sample statistics and true population parameters. For a given α , increasing n decreases β .
- 4. Choose the appropriate statistical technique and test statistic to use (Z or t).

<text><list-item><list-item>

The p-value Approach

 p-value: observed level of significance.
Defined as the probability that the test statistic is equal to or more extreme than the result obtained from the sample data, given that H_o is true.

<u>Computing p-values</u>

Z Test of Hypothesis for the Mean		
Null Hypothesis ^µ =	12.5	
Level of Significance	0.05	
Population Standard Deviation	0.5	
Sample Size	50	
Sample Mean	12.3	
Standard Error of the Mean	0.070710678	
Z Test Statistic	-2.828427125	
Two-Tailed Test		
Lower Critical Value	-1.959961082	
Upper Critical Value	1.959961082	
<i>p</i> -Value	0.00467786	
Reject the null hypothesis		

The null hypothesis is rejected because p (0.0047) is less than the level of significance (0.05).

Rank-sum test (cont'd)• The values in the first sample occupy ranks
1, 2,3,4,6,7,9,10,11,12,14,15,19,20 and 29• The sum of the ranks for the two samples,
 $W_1 = 162$ and $W_2 = 273$ • The U-test is based on the statistics
 $U_1 = W_1 - \frac{n_1(n_1+1)}{2}$
or
 $U_2 = W_2 - \frac{n_2(n_2+1)}{2}$ or on the statistic U which is the smaller
of the two

Rank-sum test (cont'd)

Under the null hypothesis that the two samples come from identical populations, it can be shown that the mean and variance of the sampling distribution of U₁ are

$$\mu_{U_1} = \frac{n_1 n_2}{2}$$

and
$$\sigma_{U_1}^2 = \frac{n_1 n_2 (n_1 + n_2 + 1)}{12}$$

Numerical studies have shown that the sampling distribution of U1 can be approximated closely by the normal distribution when n1 and n2 are both greater than 8

<u>Rank-sum test (cont'd)</u>

Thus, the test of the null hypothesis that both samples come from identical populations can be based on

$$Z = \frac{U_1 - \mu_{U_1}}{\sigma_{U_1}}$$

which is a random variable having approximately the standard normal distribution

The alternative hypothesis is either:

Population 2 is stochastically larger than Population 1

- We reject the null hypothesis if Z < -z_{\alpha}

- > Or, Population 1 is stochastically larger than Population 2
 - We reject the null hypothesis if Z > z_{α}

