$\underline{2}^{k-p}$ Fractional Factorial Designs

Fractional Factorial Designs

\square If we have 7 factors, a 2^{7} factorial design will require 128 experiments

- How much information can we obtain from fewer experiments, e.g. $2^{7-4}=8$ experiments?
$\square A 2^{k-p}$ design allows the analysis of k twolevel factors with fewer experiments

A 2^{7-4} Experimental Design

Consider the 2^{3} design below:

Experiment \#	I	A	B	C	AB	AC	BC	ABC
1	1	-1	-1	-1	1	1	1	-1
2	1	1	-1	-1	-1	-1	1	1
3	1	-1	1	-1	-1	1	-1	1
4	1	1	1	-1	1	-1	-1	-1
5	1	-1	-1	1	1	-1	-1	1
6	1	1	-1	1	-1	1	-1	-1
7	1	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1	1

If the factors, $A B, A C, B C, A B C$ are replaced by D, E, F, and G we get a 2^{7-4} design
$A 2^{7-4}$ design
If the interactions $A B, A C, A D, \ldots, A B C D$ are negligible we can use the table below

Experiment \#	I	A	B	C	D	E	F	G	y
1	1	-1	-1	-1	1	1	1	-1	20
2	1	1	-1	-1	-1	-1	1	1	35
3	1	-1	1	-1	-1	1	-1	1	7
4	1	1	1	-1	1	-1	-1	-1	42
5	1	-1	-1	1	1	-1	-1	1	36
6	1	1	-1	1	-1	1	-1	-1	50
7	1	-1	1	1	-1	-1	1	-1	45
8	1	1	1	1	1	1	1	1	82
Total	317	101	35	109	43	1	47	3	
Total/8	39.62	12.62	4.37	13.62	5.37	0.12	5.9	0.37	
Percent variation		37.26	4.74	43.4	6.75	0	8.1	0.03	

Preparing the sign table for a 2^{k-p} design

1. Choose k-p factors and prepare a complete sign table for a full factorial design with k-p factors.

There are 2^{k-p} rows and columns in the table.
The first column is marked I and consists of all 1's.
The next k-p columns correspond to the k-p selected factors. The remaining columns correspond to the products of these factors.
2. Of the $2^{k-p-k+p-1 ~ r e m a i n i n g ~ c o l u m n s, ~ s e l e c t ~} p$ columns corresponding to the p factors that were not chosen in step 1.
Note: there are several possibilities; the columns corresponding to negligible interactions should be chosen.

A 2^{4-1} design

Experiment \#	I	A	B	C	AB	AC	BC	ABC
1	1	-1	-1	-1	1	1	1	-1
2	1	1	-1	-1	-1	-1	1	1
3	1	-1	1	-1	-1	1	-1	1
4	1	1	1	-1	1	-1	-1	-1
5	1	-1	-1	1	1	-1	-1	1
6	1	1	-1	1	-1	1	-1	-1
7	1	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1	1

If the $A B C$ interaction is negligible, we should replace $A B C$ with D. If $A B$ is negligible, we can replace $A B$ with D.

Confounding

- The drawback of 2^{k-p} designs is that the experiments only yield the combined effects of two or more factors. This is called confounding
> On the previous slide, the effects of $A B C$ and D are confounded (denoted as $A B C=D$)
- In a 2^{k-1} design, every column represents a sum of two effects. > For our example,
- $A=B C D, B=A C D, C=A B D, A B=C D, A C=B D$, $B C=A D, A B C=D, I=A B C D$
- This means that columns for A, B, C, D actually correspond to $A+B C D, B+A C D, C+A B D, D+A B C$, etc.
> If we replace $A B$ with D,
- $I=A B D, A=B D, B=A D, C=A B C D, D=A B, A C=B C D$, $B C=A C D, A B C=C D$
\square In a 2^{k-p} design, 2^{p} effects are confounded

Algebra of Confounding

Consider the first design in which $A B C$ is replaced with D
> Here, $I=A B C D$
> All the confoundings can be generated using the following rules

1. I is treated as unity.e.g. I multiplied by A is A
2. Any term with a power of 2 is erased, e.g. $\mathrm{AB}^{2} \mathrm{C}$ is the same as AC.
The polynomial $I=A B C D$ is used to generate all the confoundings for this design, and is called the generator polynomial
The second design in which $A B$ was replaced by D in the sign table has generator polynomial $I=A B D$

Design Resolution

\square The resolution of a design is measured by the order of effects that are confounded
> The effect $A B C D$ is of order 4 , while I is of order 0
> If an i-th order effect is confounded with a j-th order term, the confounding is of order $i+j$
> The minimum of orders of all confoundings of a design is called its resolution

- We can easily determine the resolution of a design by looking at the generator polynomial, e.g. if $I=A B C D$, then the design has resolution 4, if $I=A B D$, the design has resolution 3
\square In general, higher resolution designs are considered better under the assumption that higher order interactions are smaller than lower-order effects

One Factor Experiment Design

One Factor Experiment Design

\square So far: unlimited factors, two levels

- Now: unlimited levels, one factor Model:
$y_{i j}=\mu+\alpha_{j}+e_{i j}$, where $y_{i j}$ is the i th response with the factor at level j, μ is the mean response, α_{j} is the effect of alternative j, and $e_{i j}$ is the error term The effects are computed such that
$\sum \alpha_{j}=0, \quad \sum_{i} e_{i j}=0, \quad \sum_{j} \sum_{i} e_{i j}=0$

Model cont'd

Notation: j (factor level), i (replication), a (number of levels), r (number of replicas)

Example: $a=3, r=5$

R	V	Z
144	101	130
120	144	180
176	211	141
288	288	374
144	72	302

Model cont'd

Notation:
$\bar{y}_{. .}=\mu$, grand mean (avg. of all responses i, j)
$\overline{\mathrm{y}}_{\mathrm{j}}=\mu+\alpha_{j}$, column mean (avg of all responses for a particular factor level)

	R	V	Z	
	144	101	130	
	120	144	180	
	176	211	141	
	288	288	374	
	144	72	302	
Column Sum	872	816	1127	2815
Column mean	$174.4 \bar{y}_{.1}$	163.2	225.4	187.7
$\bar{y}_{. .}$				

Column effect $\begin{array}{lllll} & -13.3 & \alpha_{1} & -24.5 & 37.7\end{array}$

Estimating experimental errors

Estimated response for the j th alternative is

$$
\begin{aligned}
& \hat{y}_{j}=\mu+\alpha_{j} \\
& e_{i j}=y_{i j}-\hat{y}_{j} \\
& S S E=\sum_{i=1}^{r} \sum_{j=1}^{a} e_{i j}^{2}
\end{aligned}
$$

For the example on previous slide,
SSE $=(144-187.7+13.3)^{2}+(101-187.7+24.5)^{2}+$ $(130-187.7-37.7)^{2}+\ldots+(302-187.7-37.7)^{2}$ $=94,365.20$

Allocation of variation

- We can show that SSY = SSO + SSA + SSE, where SSY is sum of squares of $y, S S O$ is the sum of squares of the grand mean, SSA is the sum of squares of effects, and SSE is the sum of squares of errors
- SSE can be easily calculated from SSY, SSO, and SSA

$$
S S 0=a r \mu^{2}, S S A=r \sum_{j=1}^{a} \alpha_{j}^{2}
$$

- Further, SST = SSY - SSO = SSA + SSE
- In our example, $S S T=105,357$; $S S A=10,992$ (10.4\%) ;

SSE = 94,365 (89.6\%)
> Is SSA statistically significant?

Analysis of variance

- Allocation of variation shows that almost 90% of the variation is due to SSE
\square In general, relatively high SSE could mean
> Factor under consideration is not important
> Number of replicas is much larger than number of factor levels
> Maybe we have two few samples and a "bad" sample with high errors
- Statistical procedure for analysis of significance of various factors -- Analysis of Variance (ANOVA)

ANOVA

- Consider that

$$
\begin{aligned}
S S Y=S S O & +S S A+S S E \\
a r=1 & +(a-1)+a(r-1) \quad \text { Degrees of freedom }
\end{aligned}
$$

- Define
$M S A=S S A /(a-1) \quad$ Mean Square of A
MSE = SSE/a(r-1) Mean Square of E
- Then, the ratio MSA/MSE has a F-distribution with (a-1)
numerator degrees of freedom and $a(r-1)$ denominator degrees of freedom
> $F(n, m)$ denotes F distribution where n and m and numerator and denominator degrees of freedom respectively

F-test

\square Tests following null hypothesis:
Response variable does not depend upon any factor α
Acceptance criteria: MSA/MSE ratio does not exceed the 1-a quantile of F distribution
\square So the question: is the factor statistically significant is equivalent to rejecting the null hypotheis above
> In other words, the F-statistic from our data should exceed the theoretical F value

F-test example

For our example,
$M S A=S S A /(a-1)=10,992 / 2=5496.1$
MSE $=$ SSE/a $(r-1)=94,265 / 12=7863.8$
Computed F statistic $=5496.1 / 7963.8=0.7$
Theoretical $F(0.9 ; 2,12)=2.8$
Thus, we can conclude that the factor under consideration is not statistically significant

Additional Reading

\square Visual Diagnostic Tests for verifying assumptions - Section 20.6

- Confidence intervals for Effects - Section 20.7
\square Unequal sample sizes - Section 20.8

Two factor full factorial designs without replications

- Experiment design with two factors, each of which can have an arbitrary number of levels
> Initially, we will not consider replications
$>$ Factors A and B, with number of levels a and b respectively, number of experiments is $a b$

Model

$y_{i j}=\mu+\alpha_{j}+\beta_{i}+e_{i j}$, where $y_{i j}$ is the observed response with the factor A at level j and the factor B at level i, μ is the mean response, α_{j} is the effect of factor A at level j, and β_{i} is the effect of factor B at level i, and $e_{i j}$ is the error term
The effects are computed such that

$$
\sum \alpha_{j}=0, \quad \sum \beta_{\mathrm{i}}=0, \quad \sum_{j} \sum_{i} e_{i j}=0
$$

We obtain $\bar{y}_{\mathrm{H}}=\mu, \quad \bar{y}_{i .}=\mu+\beta_{i}, \quad \bar{y}_{j .}=\mu+\alpha_{j}$

Computation of Effects

Workload	Two Caches	One Cache	No Cache	Row Sum	Row Mean	Row Effect
ASM	54.0	55.0	106.0	215.0	71.7	-0.5
β_{1}						
TECO	60.0	60.0	123.0	243.0	81.0	8.8
SIEVE	43.0	43.0	120.0	206.0	68.7	-3.5
DHRYSTONE	49.0	52.0	111.0	212.0	70.7	-1.5
SORT	49.0	50.0	108.0	207.0	69.0	-3.2
Column Sum	255.0	260.0	568.0	1083.0		
Column Mean	51.0	52.0	113.6		72.2	\bar{y}
Column effect	-21.2	-20.2	41.4			

Estimating experimental errors

$$
\begin{aligned}
& \hat{y}_{j}=\mu+\alpha_{j}+\beta_{i} \\
& e_{i j}=y_{i j}-\hat{y}_{j}=y_{i j}-\mu-\alpha_{j}-\beta_{i} \\
& S S E=\sum_{i=1}^{b} \sum_{j=1}^{a} e_{i j}^{2}
\end{aligned}
$$

For our example, $\hat{y}_{11}=72.2-21.2-0.5=50.5$

$$
\begin{aligned}
& e_{11}=54-50.5=3.5 \\
& S S E=3.5^{2}+0.2^{2}+\ldots . .+(-2.4)^{2}=236.80
\end{aligned}
$$

Allocation of variation

\square We can show SSY = SSO + SSA + SSB + SSE and SST = SSY - SSO = SSA + SSB + SSE
\square For our example, SSY = 91,595; SSO = 78,192.6;
$S S A=12,857.2, S S B=308.4, S S T=13,402.41$ SSE $=$ SST - SSA - SSB $=236.8$

- The percentage of variation explained by the cache is 95.9%, due to workloads is 2.3% and the unexplained variation is 1.8%

Analysis of variance (ANOVA)

- Similar to one-factor analysis

$$
M S A=S S A /(a-1) ; M S B=S S B /(b-1)
$$

$$
M S E=S S E /(a-1)(b-1)
$$

- F-ratio for factor A is $F_{A}=M S A / M S E$ and for factor B is $F_{B}=M S B / M S E$
> If greater than theoretical F-value then factor is statistically significant
> For our example, $F_{A}=217.2, F_{B}=2.6$, theoretical F value $=2.8$, so the first factor (cache) is statistically significant

Additional Reading

\square Section 21.6 - confidence intervals for effects
\square Section 21.7 - multiplicative models for two factor experiments
\square Section 21.8 - handling missing observations (optional)

Two-factor full factorial design with replications

$y_{i j k}=\mu+\alpha_{j}+\beta_{i}+\gamma_{i j}+e_{i j}$, where $y_{i j k}$ is the observed response in the kth replication of the experiment with the factor A at level j and the factor B at level i, μ is the mean response, α_{j} is the effect of factor A at level j, β_{i} is the effect of factor B at level i,
γ_{ij} is the effect of interaction between factor A at level j and factor B at level i , and and $e_{i j}$ is the experimental error
The effects are computed such that

$$
\sum \alpha_{j}=0, \quad \sum \beta_{\mathrm{i}}=0
$$

The interactions are computed so that their row as well as column sums are 0
The errors in each experiment add to 0

$$
\sum_{k=1}^{r} e_{i j k}=0, \forall i, j
$$

Computation of effects

\square The observations are arranged in b rows and a columns with each cell containing r observations

- Compute the average of the r observations for each cell
\square Then, proceed as in the analysis of twofactor design without replication

Computation of errors
$\hat{y}_{i j}=\mu+\alpha_{j}+\beta_{i}+\gamma_{i j}=\bar{y}_{i j .} \quad \begin{aligned} & \text { (the average of the } \mathrm{r} \\ & \text { observations in a cell) }\end{aligned}$
The error in the kth replication of the
experiment is $e_{i j k}=y_{i j k}-\bar{y}_{i j}$.
$S S E=\sum_{i=1}^{b} \sum_{j=1}^{a} \sum_{k=1}^{r} e_{i j k}^{2}$

Allocation of variation and ANOVA

\square We can show
SST = SSY - SSO = SSA + SSB + SSAB + SSE

- ANOVA
> F-test: compute MSA/MSE, MSB/MSE, MSAB/MSE
> Degrees of freedom: SSA has a-1, SSB has b-1, SSAB has ($a-1$)(b-1), SSE has $a b(r-1)$

Further Reading

\square Section 22.6 - confidence intervals for effects

- Chapter 23-General Full factorial designs with k factors
> Generalization of analysis techniques discussed
> Informal (non-statistical methods) for determining the important factors

