

<u>A 27-4</u> Experimental Design

Consider the 2³ design below:

Experiment #	I	A	В	С	AB	AC	BC	ABC
1	1	-1	-1	-1	1	1	1	-1
2	1	1	-1	-1	-1	-1	1	1
3	1	-1	1	-1	-1	1	-1	1
4	1	1	1	-1	1	-1	-1	-1
5	1	-1	-1	1	1	-1	-1	1
6	1	1	-1	1	-1	1	-1	-1
7	1	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1	1

If the factors, AB, AC, BC, ABC are replaced by D, E, F, and G we get a 2^{7-4} design

	AC. AD	AB0	CD are	negligil	ble we	can u	ise th	ne tabl	e bel
Experiment #	I	A	В	с С	D	E	F	G	у
1	1	-1	-1	-1	1	1	1	-1	20
2	1	1	-1	-1	-1	-1	1	1	35
3	1	-1	1	-1	-1	1	-1	1	7
4	1	1	1	-1	1	-1	-1	-1	42
5	1	-1	-1	1	1	-1	-1	1	36
6	1	1	-1	1	-1	1	-1	-1	50
7	1	-1	1	1	-1	-1	1	-1	45
8	1	1	1	1	1	1	1	1	82
Total	317	101	35	109	43	1	47	3	
Total/8	39.62	12.62	4.37	13.62	5.37	0.12	5.9	0.37	
Percent variation		37.26	4.74	43.4	6.75	0	8.1	0.03	

Experiment #	I	A	В	С	AB	AC	BC	ABC
1	1	-1	-1	-1	1	1	1	-1
2	1	1	-1	-1	-1	-1	1	1
3	1	-1	1	-1	-1	1	-1	1
4	1	1	1	-1	1	-1	-1	-1
5	1	-1	-1	1	1	-1	-1	1
6	1	1	-1	1	-1	1	-1	-1
7	1	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1	1

If the ABC interaction is negligible, we should replace ABC with D. If AB is negligible, we can replace AB with D.

- The drawback of 2^{k-p} designs is that the experiments only yield the combined effects of two or more factors. This is called confounding
 - On the previous slide, the effects of ABC and D are confounded (denoted as ABC = D)
- □ In a 2^{k-1} design, every column represents a sum of two effects.
 - > For our example,
 - A = BCD, B = ACD, C = ABD, AB = CD, AC = BD,
 - BC = AD, ABC = D, I = ABCD
 - This means that columns for A, B, C, D actually correspond to A + BCD, B + ACD, C + ABD, D+ ABC, etc.
 - > If we replace AB with D,
 - I = ABD, A = BD, B = AD, C = A BCD, D = AB, AC = BCD,

7

BC = ACD, ABC = CD

□ In a 2^{k-p} design, 2^p effects are confounded

Notation: j (f	actor leve	, , <u>,</u>	eation), a (1	number of l
Example: a =	= <i>3</i> , <i>r</i> = 5			
	R	V	Z	
	144	101	130	
	120	144	180	
	176	211	141	
	288	288	374	
	144	72	302	

Nodel cont	<u> </u>			
Notation: $\overline{y}_{\mu} = \mu$, grand	mean (avg	. of all re	esponses i,j)	1
$\overline{y}_{j} = \mu + \alpha_{j}, c$	olumn me	an (avg	of all respon	ises
	fc	or a parti	cular factor	level)
	R	V	Z	
	144	101	130	
	120	144	180	
	176	211	141	
	288	288	374	
	144	72	302	
Column Sum	872	816	1127	2815
Column mean	174.4 $\bar{y}_{.1}$	163.2	225.4	187.7 $\bar{y}_{}$

Allocation of variation

- We can show that SSY = SSO + SSA + SSE, where SSY is sum of squares of y, SSO is the sum of squares of the grand mean, SSA is the sum of squares of effects, and SSE is the sum of squares of errors
- SSE can be easily calculated from SSY, SSO, and SSA

$$SS0 = ar\mu^2, SSA = r\sum_{i=1}^{a} \alpha_j^2$$

- □ Further, SST = SSY SSO = SSA + SSE
- In our example, SST = 105,357; SSA = 10,992 (10.4%);
 SSE = 94,365 (89.6%)
 - > Is SSA statistically significant?

<section-header><list-item><list-item><list-item><list-item><table-container>

F-test example

For our example,

MSA = SSA/(a-1) = 10,992/2 = 5496.1 MSE = SSE/a(r-1) = 94,265/12 = 7863.8 Computed F statistic = 5496.1/7963.8 = 0.7 Theoretical F(0.9;2,12) = 2.8 Thus, we can conclude that the factor under consideration is not statistically significant

Model

 $y_{ij} = \mu + \alpha_j + \beta_i + e_{ij}$, where y_{ij} is the observed response with the factor A at level *j* and the factor B at level *i*, μ is the mean response, α_j is the effect of factor A at level *j*, and β_i is the effect of factor B at level *i*, and e_{ij} is the error term The effects are computed such that $\sum \alpha_j = 0$, $\sum \beta_i = 0$, $\sum \sum_j \sum_i e_{ij} = 0$

We obtain $\overline{y}_{i} = \mu$, $\overline{y}_{i} = \mu + \beta_{i}$, $\overline{y}_{j} = \mu + \alpha_{j}$

Vorkload	Two	One Casha	No Caaba	Row	Row	Row Effect
	Caches	Cache	Cache	Sum	Mean	Effect
SM	54.0	55.0	106.0	215.0	71.7	-0.5 β_1
ECO	60.0	60.0	123.0	243.0	81.0	8.8
IEVE	43.0	43.0	120.0	206.0	68.7	-3.5
HRYSTONE	49.0	52.0	111.0	212.0	70.7	-1.5
ORT	49.0	50.0	108.0	207.0	69.0	-3.2
olumn Sum	255.0	260.0	568.0	1083.0		
olumn Mean	51.0	52.0	113.6		72.2	$\overline{y}_{}$
olumn effect	-21.2	-20.2	41.4			<i>·</i>

$$\begin{aligned}$$

