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2k-p Fractional Factorial Designs
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Fractional Factorial Designs

 If we have 7 factors, a 27 factorial design
will require 128 experiments

 How much information can we obtain from
fewer experiments, e.g. 27-4 = 8
experiments?

 A 2k-p design allows the analysis of k two-
level factors with fewer experiments
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A 27-4 Experimental Design
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Consider the 23 design below:

If the factors, AB, AC, BC, ABC are replaced by D, E, F, 
and G we get a 27-4 design
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A 27-4 design
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If the interactions AB, AC, AD,…, ABCD are negligible we can use the table below
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Preparing the sign table for a 2k-p design

1. Choose k-p factors and prepare a complete sign
table for a full factorial design with k-p factors.

There are 2k-p rows and columns in the table.
The first column is marked I and consists of all 1’s.
The next k-p columns correspond to the k-p selected

factors. The remaining columns correspond to the
products of these factors.

2. Of the 2k-p-k+p-1 remaining columns, select p
columns corresponding to the p factors that
were not chosen in step 1.

Note: there are several possibilities; the columns
corresponding to negligible interactions should be
chosen.
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A 24-1 design
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If the ABC interaction is negligible, we should replace 
ABC with D. If AB is negligible, we can replace AB with D.
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Confounding
 The drawback of 2k-p designs is that the experiments only yield

the combined effects of two or more factors. This is called
confounding
 On the previous slide, the effects of ABC and D are confounded

(denoted as ABC = D)
 In a 2k-1 design, every column represents a sum of two effects.

 For our example,
• A = BCD, B = ACD, C = ABD, AB = CD, AC = BD,

BC = AD, ABC = D, I = ABCD
• This means that columns for A, B, C, D actually correspond to

A + BCD, B + ACD, C + ABD, D+ ABC, etc.
 If we replace AB with D,

• I = ABD, A = BD, B = AD, C = A BCD, D = AB, AC = BCD,
BC = ACD, ABC = CD

 In a 2k-p design, 2p effects are confounded
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Algebra of Confounding

Consider the first  design in which ABC is replaced
with D
 Here,  I = ABCD
 All the confoundings can be generated using the

following rules
1. I is treated as unity.e.g. I multiplied by A is A
2. Any term with a power of 2 is erased, e.g. AB2C is the same as

AC.

The polynomial I = ABCD is used to generate all the
confoundings for this design, and is called the
generator polynomial

The second design in which AB was replaced by D in the
sign table has generator polynomial I = ABD
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Design Resolution
 The resolution of a design is measured by the order

of effects that are confounded
 The effect ABCD is of order 4, while I is of order 0
 If an i-th order effect is confounded with a

j-th order term, the confounding is of order i+j
 The minimum of orders of all confoundings of a design is

called its resolution
• We can easily determine the resolution of a design by

looking at the generator polynomial, e.g. if I = ABCD, then
the design has resolution 4, if I = ABD, the design has
resolution 3

 In general, higher resolution designs are considered
better under the assumption that higher order
interactions are smaller than lower-order effects

10

One Factor Experiment Design
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One Factor Experiment Design

 So far: unlimited factors, two levels
 Now: unlimited levels, one factor
Model:

€ 

yij = µ +α j + eij ,  where yij  is the ith response 
with the factor at level j,  µ is the mean response, 
α j  is the effect of alternative j,  and eij  is the error term
The effects are computed such that

 α j∑ = 0,       eij
i
∑ = 0,    eij

i
∑

j
∑ = 0

12

Model cont’d
Notation: j (factor level), i (replication), a (number of levels),

    r (number of replicas)

Example: a = 3, r = 5
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Model cont’d
Notation:

€ 

y .. = µ,  grand mean (avg. of all responses i, j)
y .j = µ +α j,  column mean (avg of all responses
                                    for a particular factor level)

187.7

2815

Column effect

Column mean

Column Sum

37.7-24.5-13.3

225.4163.2174.4

1127816872

30272144

374288288

141211176

180144120

130101144

ZVR

€ 

y ..

€ 

y .1

€ 

α1
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Estimating experimental errors

Estimated response for the jth alternative is

For the example on previous slide,
SSE = (144 - 187.7 + 13.3)2+ (101 - 187.7 + 24.5 )2 +

(130 - 187.7 - 37.7)2+… + (302 - 187.7 -37.7)2

      = 94,365.20
€ 

ˆ y j = µ +α j

eij = yij − ˆ y j

SSE = eij
2

j=1

a

∑
i=1

r

∑
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Allocation of variation

 We can show that SSY = SS0 + SSA + SSE, where SSY is
sum of squares of y, SS0 is the sum of squares of the grand
mean, SSA is the sum of squares of effects, and SSE is the
sum of squares of errors

 SSE can be easily calculated from SSY, SS0, and SSA

 Further, SST = SSY - SS0 = SSA + SSE
 In our example, SST = 105,357; SSA = 10,992 (10.4%) ;

SSE = 94,365 (89.6%)
 Is SSA statistically significant?
€ 

SS0 = arµ2,  SSA = r α j
2

j=1

a

∑
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Analysis of variance

 Allocation of variation shows that almost 90% of
the variation is due to SSE

 In general, relatively high SSE could mean
 Factor under consideration is not important
 Number of replicas is much larger than number of factor

levels
 Maybe we have two few samples and a “bad” sample with

high errors

 Statistical procedure for analysis of significance
of various factors -- Analysis of Variance
(ANOVA)
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ANOVA

 Consider that
SSY = SS0  +  SSA  +   SSE
    ar =     1   + (a -1)  + a (r-1)      Degrees of freedom

  Define
MSA = SSA/(a-1)       Mean Square of A
MSE  = SSE/a(r-1)     Mean Square of E

 Then, the ratio MSA/MSE  has a F-distribution with (a-1)
numerator degrees of freedom and a(r-1) denominator degrees
of freedom
 F(n,m) denotes F distribution where n and m and numerator and

denominator degrees of freedom respectively

18

F-test

 Tests following null hypothesis:
Response variable does not depend upon any

factor α
Acceptance criteria: MSA/MSE ratio does not

exceed the 1-α quantile of F distribution
 So the question: is the factor statistically

significant is equivalent to rejecting the
null hypotheis above
 In other words, the F-statistic from our data

should exceed the theoretical F value
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F-test example

For our example,
MSA = SSA/(a-1) = 10,992/2 = 5496.1

   MSE = SSE/a(r-1) = 94,265/12 = 7863.8
Computed F statistic = 5496.1/7963.8 = 0.7
Theoretical F(0.9;2,12) = 2.8
Thus, we can conclude that the factor under

consideration is not statistically significant
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Additional Reading

 Visual Diagnostic Tests for verifying
assumptions - Section 20.6

 Confidence intervals for Effects - Section
20.7

 Unequal sample sizes - Section 20.8
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Two factor full factorial designs
without replications

 Experiment design with two factors, each
of which can have an arbitrary number of
levels
 Initially, we will not consider replications
 Factors A and B, with number of levels a and b

respectively, number of experiments is ab

22

Model

€ 

yij = µ +α j + β i + eij ,  where yij is the observed response 
with the factor A at level j and the factor B at level i,  
µ is the mean response, α j  is the effect of factor A at level j,  
and  β i is the effect of factor B at level i,  and eij 
is the error term
The effects are computed such that

          α j∑ = 0,       β i∑ = 0,    eij
i
∑

j
∑ = 0

We obtain y .. = µ,    y i. = µ + β i,     y j . = µ +α j
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Computation of Effects
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Estimating experimental errors

€ 

ˆ y j = µ +α j + βi

eij = yij − ˆ y j = yij −µ −α j −β i

SSE = eij
2

j=1

a

∑
i=1

b

∑

For our example, 

€ 

ˆ y 11 = 72.2 − 21.2 − 0.5 = 50.5
e11 = 54 − 50.5 = 3.5

SSE = 3.52 + 0.22 + .....+ (−2.4)2 = 236.80
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Allocation of variation

 We can show SSY = SS0 + SSA + SSB + SSE
and SST = SSY - SS0 = SSA+SSB + SSE

 For our example, SSY = 91,595; SS0 = 78,192.6;
SSA = 12,857.2,  SSB = 308.4, SST = 13,402.41
SSE = SST - SSA - SSB = 236.8

 The percentage of variation explained by the
cache is 95.9%, due to workloads is 2.3% and the
unexplained variation is 1.8%

26

Analysis of variance (ANOVA)

 Similar to one-factor analysis
MSA = SSA/(a-1); MSB = SSB/(b-1)
MSE = SSE/(a-1)(b-1)

 F-ratio for factor A is FA = MSA/MSE and for
factor B is FB = MSB/MSE
 If greater than theoretical F-value then factor is

statistically significant
 For our example, FA = 217.2, FB = 2.6, theoretical F value

= 2.8, so the first factor (cache) is statistically
significant
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Additional Reading

 Section 21.6 - confidence intervals for
effects

 Section 21.7 - multiplicative models for two
factor experiments

 Section 21.8 - handling missing
observations (optional)
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Two-factor full factorial design with replications

€ 

yijk = µ +α j + β i + γ ij + eij,  where yijk  is the observed response 
in the kth replication of the experiment with the factor A at level 
j and the factor B at level i,  µ is the mean response, α j  is the effect 
of factor A at level j,  β i is the effect of factor B at level i,  
γ ij is the effect of interaction between factor A at level j and 
factor B at level i, and and eij  is the experimental error 
The effects are computed such that

          α j∑ = 0,       β i∑ = 0,    

The interactions are computed so that their row as well as column
sums are 0
The errors in each experiment add to 0

             eijk
k=1

r

∑ = 0,∀i, j
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Computation of effects

 The observations are arranged in b rows
and a columns with each cell containing r
observations

 Compute the average of the r observations
for each cell

 Then, proceed as in the analysis of two-
factor design without replication

30

Computation of errors

€ 

ˆ y ij = µ +α j + β i + γ ij = y ij.
The error in the kth replication of the
experiment is eijk = yijk − y ij.

SSE = eijk
2

k=1

r

∑
j=1

a

∑
i=1

b

∑

(the average  of the r
observations in a cell)
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Allocation of variation and ANOVA

 We can show
      SST = SSY - SS0 = SSA + SSB + SSAB + SSE

 ANOVA
 F-test: compute MSA/MSE, MSB/MSE, MSAB/MSE
 Degrees of freedom: SSA has a-1, SSB has b-1, SSAB has

(a-1)(b-1), SSE has ab(r-1)
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Further Reading

 Section 22.6 - confidence intervals for
effects

 Chapter 23 - General Full factorial designs
with k factors
 Generalization of analysis techniques discussed
 Informal (non-statistical methods) for

determining the important factors


