

 1

CS 700: Quantitative Methods &
Experimental Design in Computer Science

Sanjeev Setia
Dept of Computer Science
George Mason University

2

Logistics

 Grade: 35% project, 25% Homework assignments
20% midterm, 20% take home final

 Slides, assignments, reading material on class web
page http://www.cs.gmu.edu/~setia/cs700/

 Several small assignments related to material
discussed in class
 Not all will be graded, but we will go over solutions in

class
 Term project

 should involve experimentation (measurement, simulation)
 select a topic in your research area if possible
 apply techniques discussed in this class

 2

3

Readings

 Textbook
 David Lilja, “Measuring Computer Performance: A

Practitioner’s Guide” OR
 Raj Jain, “Art of Computer Systems Performance

Analysis”
 Class notes, slides
 Relevant research articles (links on class web site)
 Books on probability and statistics for engineers

(see syllabus)
 More specialized topics

 Cohen “Empirical techniques in AI”
 Crovella et al “Internet Measurement”

4

Course Topics

 Basic techniques in “experimental” computer
science
 Basic measurement tools and techniques
 Simulation
 Design of experiments

 Quantitative Methods
 Use of statistical techniques in design of experiments
 Use of statistical techniques in comparing alternatives
 Characterizing and interpreting measured data

 Simple analytical modeling

Most examples will be from performance measurement of
computer systems and networks, but techniques are
applicable in all fields of CS

 3

5

Experimental Science

Scientific Method
1. Identify a problem and form hypothesis

 Hypothesis must be testable and refutable
2. Design an experiment
3. Conduct the experiment
4. Perform hypothesis testing

 Use statistical techniques

What about Computer Science?

6

Experimental Computer Science

Three definitions (Feitelson, 2006)
 Building of systems, hardware or software

 Counterpart to “theoretical CS”
 Experimentation as a feedback step in engineering

loop
 Evaluation of computer systems using the

methodologies of the natural sciences, i.e.
rigorous methodologies
 Focus of this class

Feitelson makes the case that there is a place for
observation of the real world, as in the natural
sciences, e.g., analyzing measured network traffic

 4

7

The Role of Experimentation in CS

8

Schedule

 Introduction
 Metrics
 Summarizing Measured Data
 Measurement Techniques
 Simulation
 Comparing Alternatives
 Linear Regression Models
 Design of experiments
 Interpreting & characterizing measured data
 Analytical Modeling

 5

9

Course Goals

 Understand the inherent trade-offs involved in
using simulation, measurement, and analytical
modeling.

 Rigorously compare computer
systems/networks/software/artifacts/… often
in the presence of measurement noise

 Usually compare performance but in many fields of CS,
“quality” of the output is more important than raw
performance, e.g. face recognition software

 Determine whether a change made to a system
has a statistically significant impact

10

Course Goals

 Use statistical tools to reduce the
number of simulations that need to be
performed of a computer system.

 Design a set of experiments to obtain the
most information for a given level of
effort.

 6

11

Course Goals

 Provide intuitive conceptual background
for some standard statistical tools.

• Draw meaningful conclusions in presence of
noisy measurements.

• Allow you to correctly and intelligently apply
techniques in new situations.

12

Course Goals

 Present techniques for aggregating and
interpreting large quantities of data.

• Obtain a big-picture view of your results.
• Obtain new insights from complex measurement and

simulation results.
→ E.g. How does a new feature impact the overall

system?

 7

13

Agenda

 Today
 Overview of course
 Performance metrics

o Characteristics of good metrics
o Standard processor and system metrics
o Speedup and relative change

14

Agenda (cont.)

 Measurement tools and techniques
 Fundamental strategies
 Interval timers
 Cycle counters
 Program profiling
 Tracing
 Indirect measurement
 Measuring network delays and bandwidth

 8

15

Agenda (cont.)

 Simulation
 Types of simulations
 Random number generation
 Verification and validation

16

Agenda (cont.)

 Statistical interpretation of measured
data
 Arithmetic, harmonic, geometric means
 Sources of measurement error
 Confidence intervals
 Statistically comparing alternatives

 9

17

Agenda (cont.)

 Design of experiments
 Terminology
 One-factor analysis of variance (ANOVA)
 Two-factor ANOVA
 Generalized m-factor experiments
 Fractional factorial designs
 Multi-factorial designs (Plackett and Berman)

18

Agenda (cont’d)

 Characterizing Measured Data
 Workload Characterization
 Fitting Measured Data to Known Distributions

o Q-Q plots
o Chi-square, K-S tests

 10

19

Agenda (cont’d)

 Simple analytical modeling
 Simple queuing models

o Single queue models
o Networks of queues

 Operational analysis
o Little’s Law

20

Readings

 Dror Feitelson, “Experimental Computer
Science: The need for a cultural change”

 11

Metrics

22

Performance metrics

 What is a performance metric?
 Characteristics of good metrics
 Standard processor and system metrics
 Speedup and relative change

 12

23

What is a performance metric?

 Count
 Of how many times an event occurs

 Duration
 Of a time interval

 Size
 Of some parameter

 A value derived from these fundamental
measurements

24

Time-normalized metrics

 “Rate” metrics
 Normalize metric to common time basis

o Transactions per second
o Bytes per second

 (Number of events) ÷ (time interval over which
events occurred)

 “Throughput”
 Useful for comparing measurements over

different time intervals

 13

25

What makes a “good” metric?

 Allows accurate and detailed comparisons
 Leads to correct conclusions
 Is well understood by everyone
 Has a quantitative basis
 A good metric helps avoid erroneous

conclusions

26

Good metrics are …

 Linear
 Fits with our intuition
 If metric increases 2x, performance should

increase 2x
 Not an absolute requirement, but very appealing

o dB scale to measure sound is nonlinear

 14

27

Good metrics are …

 Reliable
 If metric A > metric B

o Then, Performance A > Performance B
 Seems obvious!
 However,

o MIPS(A) > MIPS(B), but
o Execution time (A) > Execution time (B)

28

Good metrics are …

 Repeatable
 Same value is measured each time an

experiment is performed
 Must be deterministic
 Seems obvious, but not always true…

o E.g. Time-sharing changes measured execution
time

 15

29

Good metrics are …

 Easy to use
 No one will use it if it is hard to measure
 Hard to measure/derive

o → less likely to be measured correctly
 A wrong value is worse than a bad metric!

30

Good metrics are …

 Consistent
 Units and definition are constant across

systems
 Seems obvious, but often not true…

o E.g. MIPS, MFLOPS
 Inconsistent → impossible to make comparisons

 16

31

Good metrics are …

 Independent
 A lot of $$$ riding on performance results
 Pressure on manufacturers to optimize for a

particular metric
 Pressure to influence definition of a metric
 But a good metric is independent of this

pressure

32

Good metrics are …

 Linear -- nice, but not necessary
 Reliable -- required
 Repeatable -- required
 Easy to use -- nice, but not necessary
 Consistent -- required
 Independent -- required

 17

33

Clock rate

 Faster clock == higher performance
 1 GHz processor always better than 2 GHz

 But is it a proportional increase?
 What about architectural differences?

 Actual operations performed per cycle
 Clocks per instruction (CPI)
 Penalty on branches due to pipeline depth

 What if the processor is not the
bottleneck?
 Memory and I/O delays

34

Clock rate

 (Faster clock)
≠ (better performance)

 A good first-order metric

☺Independent

☺Consistent

☺Easy to
measure

☺Repeatable

Reliable

Linear

 18

35

MIPS

 Measure of computation “speed”
 Millions of instructions executed per

second
 MIPS = n / (Te * 1000000)

 n = number of instructions
 Te = execution time

 Physical analog
 Distance traveled per unit time

36

MIPS

 But how much actual
computation per instruction?
 E.g. CISC vs. RISC
 Clocks per instruction (CPI)

 MIPS = Meaningless
Indicator of Performance

☺Independent

Consistent

☺Easy to
measure

☺Repeatable

Reliable

Linear

 19

37

MFLOPS

 Better definition of “distance traveled”
 1 unit of computation (~distance) ≡ 1

floating-point operation
 Millions of floating-point ops per second
 MFLOPS = f / (Te * 1000000)

 f = number of floating-point instructions
 Te = execution time

 GFLOPS, TFLOPS,…

38

MFLOPS

 Integer program = 0
MFLOPS
 But still doing useful work
 Sorting, searching, etc.

 How to count a FLOP?
 E.g. transcendental ops, roots

 Too much flexibility in
definition of a FLOP

 Not consistent across
machines Independent

Consistent

☺Easy to
measure

☺Repeatable

Reliable

Linear

 20

39

SPEC

 System Performance Evaluation Coop
 Computer manufacturers select

“representative” programs for benchmark
suite

 Standardized methodology
 Measure execution times
 Normalize to standard basis machine
 SPECmark = geometric mean of normalized

values

40

SPEC

 Geometric mean is
inappropriate (more later)

 SPEC rating does not
correspond to execution
times of non-SPEC programs

 Subject to tinkering
 Committee determines which

programs should be part of the
suite

 Targeted compiler
optimizations Independent

☺Consistent

½☺Easy to
measure

☺Repeatable

Reliable

Linear

 21

41

Execution time

 Ultimately interested in time required to
execute your program

 Smallest total execution time == highest
performance

 Compare times directly
 Derive appropriate rates
 Time == fundamental metric of

performance
 If you can’t measure time, you don’t know

anything

42

Execution time

 “Stopwatch” measured execution time
Start_count = read_timer();

Portion of program to be measured
Stop_count = read_timer();
Elapsed_time = (stop_count – start_count)
 * clock_period;

 Measures “wall clock” time
 Includes I/O waits, time-sharing, OS overhead,

…
 “CPU time” -- include only processor time

 22

43

Execution time

 Best to report both wall
clock and CPU times

 Includes system noise
effects
 Background OS tasks
 Virtual to physical page

mapping
 Random cache mapping and

replacement
 Variable system load

 Report both mean and
variance (more later)

☺Independent

☺Consistent

☺Easy to
measure

≈☺Repeatable

☺Reliable

☺Linear

44

Performance metrics summary

TIMESPECMFLOPSMIPSClock

☺
☺
☺
☺

☺

☺
☺

☺
☺

☺
½☺
☺

☺Independent

☺Consistent

☺Easy to
measure

☺Repeatable

≈☺Reliable

☺Linear

 23

45

Other metrics

 Response time
 Elapsed time from request to response

 Throughput
 Jobs, operations completed per unit time
 E.g. video frames per second

 Bandwidth
 Bits per second

 Ad hoc metrics
 Defined for a specific need

46

Means vs. ends metrics

 Means-based metrics
 Measure what was done
 Whether or not it was useful!

o Nop instructions, multiply by zero, …
 Produces unreliable metrics

 Ends-based metrics
 Measures progress towards a goal
 Only counts what is actually accomplished

 24

47

Means vs. ends metrics

Means-based Ends-based

C
lo

ck
 ra

te

M
IP

S

M
FL

O
P

S

S
P

E
C

E
xe

cu
tio

n
tim

e

48

Speedup

 Speedup of System 1 w.r.t System 2
 S2,1 such that: R2 = S2,1 R1

 R1 = “speed” of System 1
 R2 = “speed” of System 2

 System 2 is S2,1 times faster than System
1

 25

49

Speedup

 “Speed” is a rate metric
 Ri = Di / Ti
 Di ~ “distance traveled” by System i

 Run the same benchmark program on both
systems
 → D1 = D2 = D

 Total work done by each system is defined
to be “execution of the same program”
 Independent of architectural differences

50

Speedup

2

1

1

2

11

22

1

2

1,2
/

/

/

/

T

T

TD

TD

TD

TD

R

R
S

=

===

 26

51

Speedup

1 Systemn slower tha is 2 System1

1 Systemn faster tha is 2 System1

1,2

1,2

!<

!>

S

S

52

Relative change

 Performance of System 2 relative to
System 1 as percent change

1

12

1,2
R

RR !
="

 27

53

Relative change

1

/

//

1,2

2

21

1

12

1

12

1,2

!=

!
=

!
=

!
="

S

T

TT

TD

TDTD

R

RR

54

Relative change

1 Systemn slower tha is 2 System0

1 Systemn faster tha is 2 System0

1,2

1,2

!<"

!>"

 28

55

Important Points

 Metrics can be
 Counts
 Durations
 Sizes
 Some combination of the above

56

Important Points

 Good metrics are
 Linear

o More “natural”
 Reliable

o Useful for comparison and prediction
 Repeatable
 Easy to use
 Consistent

o Definition is the same across different systems
 Independent of outside influences

