Design of Experiments

CS 700

1

Design of Experiments

- □ Goals
- □ Terminology
- □ Full factorial designs
 - > m-factor ANOVA
- □ Fractional factorial designs
- Multi-factorial designs

Recall: One-Factor ANOVA

- Separates total variation observed in a set of measurements into:
 - 1. Variation within one system
 - Due to random measurement errors
 - 2. Variation between systems
 - Due to real differences + random error
- Is variation(2) statistically > variation(1)?
- One-factor experimental design

3

ANOVA Summary

Variation	Alternatives	Error	Total
Sum of squares	SSA	SSE	SST
Deg freedom	k-1	k(n-1)	kn-1
Mean square	$s_a^2 = SSA/(k-1)$	$s_e^2 = SSE/[k(n-1)]$	
Computed F	S_a^2/S_e^2		
Tabulated F	$F_{[1-\alpha;(k-1),k(n-1)]}$		

Generalized Design of Experiments

- □ Goals
 - > Isolate effects of each input variable.
 - > Determine effects of interactions.
 - > Determine magnitude of experimental error
 - > Obtain maximum information for given effort
- □ Basic idea
 - > Expand 1-factor ANOVA to m factors

5

Terminology

- □ Response variable
 - > Measured output value
 - E.g. total execution time
- □ Factors
 - > Input variables that can be changed
 - \bullet E.g. cache size, clock rate, bytes transmitted
- Levels
 - > Specific values of factors (inputs)
 - Continuous (~bytes) or discrete (type of system)

Terminology

- Replication
 - Completely re-run experiment with same input levels
 - > Used to determine impact of measurement error
- □ Interaction
 - > Effect of one input factor depends on level of another input factor

7

Two-factor Experiments

- □ Two factors (inputs)
 - > A, B
- Separate total variation in output values into:
 - > Effect due to A
 - > Effect due to B
 - > Effect due to interaction of A and B (AB)
 - > Experimental error

Example - User Response Time

- A = degree of multiprogramming
- □ B = memory size
- AB = interaction of memory size and degree of multiprogramming

	B (Mbytes)				
A	32	128			
1	0.25	0.21	0.15		
2	0.52	0.45	0.36		
3	0.81	0.66	0.50		
4	1.50	1.45	0.70		

9

Two-factor ANOVA

- □ Factor A a input levels
- □ Factor B b input levels
- \square *n* measurements for each input combination
- □ abn total measurements

Recall: One-factor ANOVA

- Each individual measurement is composition of
 - > Overall mean
 - Effect of alternatives
 - Measurement errors

$$y_{ij} = \overline{y}_{..} + \alpha_i + e_{ij}$$

 $\overline{y}_{..}$ = overall mean

 α_i = effect due to A

 e_{ij} = measurement error

Two-factor ANOVA

- Each individual measurement is composition of
 - Overall mean
 - Effects
 - > Interactions
 - Measurement errors

$$y_{ijk} = \overline{y}_{...} + \alpha_i + \beta_j + \gamma_{ij} + e_{ijk}$$

 \overline{y} = overall mean

 α_i = effect due to A

 β_i = effect due to B

 γ_{ij} = effect due to interaction of A and B

 e_{ijk} = measurement error

13

Sum-of-Squares

□ As before, use sum-of-squares identity

- □ Degrees of freedom
 - \rightarrow df(SSA) = a 1
 - > df(SSB) = b 1
 - \rightarrow df(SSAB) = (a 1)(b 1)
 - \rightarrow df(SSE) = ab(n 1)
 - > df(SST) = abn 1

Two-Factor ANOVA

	A	В	AB	Error
Sum of squares	SSA	SSB	SSAB	SSE
Deg freedom	a-1	b-1	(a-1)(b-1)	ab(n-1)
Mean square	$s_a^2 = SSA/(a-1)$	$s_b^2 = SSB/(b-1)$	$s_{ab}^2 = SSAB/[(a-1)(b-1)]$	$s_e^2 = SSE/[ab(n-1)]$
Computed F	$F_a = s_a^2 / s_e^2$	$F_b = s_b^2 / s_e^2$	$F_{ab} = s_{ab}^2 / s_e^2$	
Tabulated F	$F_{[1-\alpha;(a-1),ab(n-1)]}$	$F_{[1-\alpha;(b-1),ab(n-1)]}$	$F_{[1-\alpha;(a-1)(b-1),ab(n-1)]}$	

15

Need for Replications

- ☐ If n=1
 - > Only one measurement of each configuration
- □ Can then be shown that
 - > SSAB = SST SSA SSB
- Since
 - > SSE = SST SSA SSB SSAB
- We have
 - > SSE = 0

Need for Replications

- □ Thus, when n=1
 - > SSE = 0
 - \rightarrow No information about measurement errors
- □ Cannot separate effect due to interactions from measurement noise
- Must replicate each experiment at least twice

17

Example

- Output = user response time (seconds)
- Want to separate effects due to
 - A = degree of multiprogramming
 - B = memory size
 - > AB = interaction
 - > Error
- Need replications to separate error

	B (Mbytes)				
A	32	128			
1	0.25	0.25 0.21			
2	0.52	0.45	0.36		
3	0.81	0.66	0.50		
4	1.50	1.45	0.70		

Example

	B (Mbytes)			
A	32	64	128	
1	0.25	0.21	0.15	
	0.28	0.19	0.11	
2	0.52	0.45	0.36	
	0.48	0.49	0.30	
3	0.81	0.66	0.50	
	0.76	0.59	0.61	
4	1.50	1.45	0.70	
	1.61	1.32	0.68	

19

Example

	A	В	AB	Error
Sum of squares	3.3714	0.5152	0.4317	0.0293
Deg freedom	3	2	6	12
Mean square	1.1238	0.2576	0.0720	0.0024
Computed F	460.2	105.5	29.5	
Tabulated F	$F_{[0.95;3,12]} = 3.49$	$F_{[0.95;2,12]} = 3.89$	$F_{[0.95;6,12]} = 3.00$	

Conclusions From the Example

- 77.6% (SSA/SST) of all variation in response time due to degree of multiprogramming
- □ 11.8% (SSB/SST) due to memory size
- 9.9% (SSAB/SST) due to interaction
- □ 0.7% due to measurement error
- 95% confident that all effects and interactions are statistically significant

21

Generalized m-factor Experiments

m factors ⇒Effects for 3m main effectsfactors: $\binom{m}{2}$ two-factor interactionsABC $\binom{m}{3}$ three-factor interactionsAB⋮ACBCBCABCABC2^m - 1 total effectsABC

<u>Degrees of Freedom for *m*-factor</u> <u>Experiments</u>

```
    □ df(SSA) = (a-1)
    □ df(SSB) = (b-1)
    □ df(SSC) = (c-1)
    □ df(SSAB) = (a-1)(b-1)
    □ df(SSAC) = (a-1)(c-1)
    □ ...
    □ df(SSE) = abc(n-1)
    □ df(SSAB) = abcn-1
```

23

<u>Procedure for Generalized</u> <u>m-factor Experiments</u>

- 1. Calculate (2^m-1) sum of squares terms (55x) and 55E
- 2. Determine degrees of freedom for each SSx
- 3. Calculate mean squares (variances)
- 4. Calculate F statistics
- 5. Find critical F values from table
- 6. If F(computed) > F(table), (1-α) confidence that effect is statistically significant

A Problem

- □ Full factorial design with replication
 - Measure system response with all possible input combinations
 - Replicate each measurement n times to determine effect of measurement error
- \square m factors, v levels, n replications
 - $\rightarrow n v^m$ experiments
- \square m = 5 input factors, v = 4 levels, n = 3
 - \rightarrow 3(4⁵) = 3,072 experiments!

25

<u>Fractional Factorial Designs: n2m</u> <u>Experiments</u>

- Special case of generalized m-factor experiments
- Restrict each factor to two possible values
 - > High, low
 - > On, off
- □ Find factors that have largest impact
- Full factorial design with only those factors

$\underline{n2^{\underline{m}}}$ Experiments

	Α	В	AB	Error
Sum of squares	SSA	SSB	SSAB	SSE
Deg freedom	1	1	1	$2^m(n-1)$
Mean square	$s_a^2 = SSA/1$	$s_b^2 = SSB/1$	$s_{ab}^2 = SSAB/1$	$s_e^2 = SSE/[2^m(n-1)]$
Computed F	$F_a = s_a^2 / s_e^2$	$F_b = s_b^2 / s_e^2$	$F_{ab} = s_{ab}^2 / s_e^2$	
Tabulated F	$F_{[1-\alpha;1,2^m(n-1)]}$	$F_{[1-\alpha;1,2^m(n-1)]}$	$F_{[1-\alpha;1,2^m(n-1)]}$	

27

Finding Sum of Squares Terms

Sum of <i>n</i> measurements with (A,B) = (High, Low)	Factor A	Factor B
Уав	High	High
Уаь	High	Low
УаВ	Low	High
Yab	Low	Low

<u>n2^m</u> Contrasts

$$w_{A} = y_{AB} + y_{Ab} - y_{aB} - y_{ab}$$

$$w_{B} = y_{AB} - y_{Ab} + y_{aB} - y_{ab}$$

$$w_{AB} = y_{AB} - y_{Ab} - y_{aB} + y_{ab}$$

29

n2m Sum of Squares

$$SSA = \frac{w_A^2}{n2^m}$$

$$SSB = \frac{w_B^2}{n2^m}$$

$$SSAB = \frac{w_{AB}^2}{n2^m}$$

$$SSE = SST - SSA - SSB - SSAB$$

To Summarize -- n2^m Experiments

	Α	В	AB	Error
Sum of squares	SSA	SSB	SSAB	SSE
Deg freedom	1	1	1	$2^m(n-1)$
Mean square	$s_a^2 = SSA/1$	$s_b^2 = SSB/1$	$s_{ab}^2 = SSAB/1$	$s_e^2 = SSE/[2^m(n-1)]$
Computed F	$F_a = s_a^2 / s_e^2$	$F_b = s_b^2 / s_e^2$	$F_{ab} = s_{ab}^2 / s_e^2$	
Tabulated F	$F_{[1-\alpha;1,2^m(n-1)]}$	$F_{[1-\alpha;1,2^m(n-1)]}$	$F_{[1-\alpha;1,2^m(n-1)]}$	

3

Contrasts for $n2^{m}$ with m = 2 factors -revisited

Measurements	Contrast			
	w _a	w _b	w _{ab}	
Y _{AB}	+	+	+	
Y _A b	+	-	-	
YaB	-	+	-	
Yab	-	-	+	

$$w_{A} = y_{AB} + y_{Ab} - y_{aB} - y_{ab}$$

$$w_{B} = y_{AB} - y_{Ab} + y_{aB} - y_{ab}$$

$$w_{AB} = y_{AB} - y_{Ab} - y_{aB} + y_{ab}$$

Contrasts for $n2^{m}$ with m = 3 factors

Meas		Contrast					
	w _a	w _b	W _c	W _{ab}	W _{ac}	w _{bc}	W _{abc}
Yabc	-	-	-	+	+	+	-
YAbc	+	-	-	-	-	+	+
YaBc	-	+	-	-	+	-	+

$$W_{AC} = y_{abc} - y_{Abc} + y_{aBc} - y_{abC} - y_{ABc} + y_{AbC} - y_{aBC} + y_{ABC}$$

33

$\underline{n2^{m}}$ with $\underline{m} = 3$ factors

$$SSAC = \frac{w_{AC}^2}{2^3 n}$$

- □ df(each effect) = 1, since only two levels measured
- □ SST = SSA + SSB + SSC + SSAB + SSAC + SSBC + SSABC
- \Box df(SSE) = (n-1)2³
- □ Then perform ANOVA as before
- □ Easily generalizes to m > 3 factors

Important Points

- Experimental design is used to
 - > Isolate the effects of each input variable.
 - Determine the effects of interactions.
 - > Determine the magnitude of the error
 - Obtain maximum information for given effort
- Expand 1-factor ANOVA to m factors
- \square Use $n2^m$ design to reduce the number of experiments needed
 - > But loses some information

35

Still Too Many Experiments with n2ml

- □ Plackett and Burman designs (1946)
 - > Multifactorial designs
- Effects of main factors only
 - Logically minimal number of experiments to estimate effects of m input parameters (factors)
 - > Ignores interactions
- \square Requires O(m) experiments
 - > Instead of $O(2^m)$ or $O(v^m)$

Plackett and Burman Designs

- PB designs exist only in sizes that are multiples of
- \square Requires X experiments for m parameters
 - > $X = \text{next multiple of } 4 \ge m$
- □ PB design matrix
 - > Rows = configurations
 - > Columns = parameters' values in each config
 - High/low = +1/-1
 - > First row = from P&B paper
 - > Subsequent rows = circular right shift of preceding row
 - Last row = all (-1)

37

PB Design Matrix

Config		Input Parameters (factors)					Response	
	A	В	C	D	E	F	G	
1	+1	+1	+1	-1	+1	-1	-1	9
2	-1	+1	+1	+1	-1	+1	-1	
3	-1	-1	+1	+1	+1	-1	+1	
4	+1	-1	-1	+1	+1	+1	-1	
5	-1	+1	-1	-1	+1	+1	+1	
6	+1	-1	+1	-1	-1	+1	+1	
7	+1	+1	-1	+1	-1	-1	+1	
8	-1	-1	-1	-1	-1	-1	-1	
Effect								

<u>PB Design Matrix</u>

Config		Input Parameters (factors)							
	A	В	С	D	E	F	G		
1	+1	+1	+1	-1	+1	-1	-1	9	
2	-1	+1	+1	+1	-1	+1	-1	11	
3	-1	-1	+1	+1	+1	-1	+1		
4	+1	-1	-1	+1	+1	+1	-1		
5	-1	+1	-1	-1	+1	+1	+1		
6	+1	-1	+1	-1	-1	+1	+1		
7	+1	+1	-1	+1	-1	-1	+1		
8	-1	-1	-1	-1	-1	-1	-1		
Effect									

39

<u>PB Design Matrix</u>

Config		Input Parameters (factors)								
	A	В	С	D	E	F	G			
1	+1	+1	+1	-1	+1	-1	-1	9		
2	-1	+1	+1	+1	-1	+1	-1	11		
3	-1	-1	+1	+1	+1	-1	+1	2		
4	+1	-1	-1	+1	+1	+1	-1	1		
5	-1	+1	-1	-1	+1	+1	+1	9		
6	+1	-1	+1	-1	-1	+1	+1	74		
7	+1	+1	-1	+1	-1	-1	+1	7		
8	-1	-1	-1	-1	-1	-1	-1	4		
Effect										

<u>PB Design Matrix</u>

Config		Input Parameters (factors)								
	A	В	С	D	E	F	G			
1	+1	+1	+1	-1	+1	-1	-1	9		
2	-1	+1	+1	+1	-1	+1	-1	11		
3	-1	-1	+1	+1	+1	-1	+1	2		
4	+1	-1	-1	+1	+1	+1	-1	1		
5	-1	+1	-1	-1	+1	+1	+1	9		
6	+1	-1	+1	-1	-1	+1	+1	74		
7	+1	+1	-1	+1	-1	-1	+1	7		
8	-1	-1	-1	-1	-1	-1	-1	4		
Effect	65									

41

<u>PB Design Matrix</u>

Config		Input Parameters (factors)								
	A	В	С	D	E	F	G			
1	+1	+1	+1	-1	+1	-1	-1	9		
2	-1	+1	+1	+1	-1	+1	-1	11		
3	-1	-1	+1	+1	+1	-1	+1	2		
4	+1	-1	-1	+1	+1	+1	-1	1		
5	-1	+1	-1	-1	+1	+1	+1	9		
6	+1	-1	+1	-1	-1	+1	+1	74		
7	+1	+1	-1	+1	-1	-1	+1	7		
8	-1	-1	-1	-1	-1	-1	-1	4		
Effect	65	-45								

PB Design Matrix

Config		Input Parameters (factors)						
	A	В	С	D	E	F	G	
1	+1	+1	+1	-1	+1	-1	-1	9
2	-1	+1	+1	+1	-1	+1	-1	11
3	-1	-1	+1	+1	+1	-1	+1	2
4	+1	-1	-1	+1	+1	+1	-1	1
5	-1	+1	-1	-1	+1	+1	+1	9
6	+1	-1	+1	-1	-1	+1	+1	74
7	+1	+1	-1	+1	-1	-1	+1	7
8	-1	-1	-1	-1	-1	-1	-1	4
Effect	65	-45	75	-75	-75	73	67	

43

PB Design

- Only magnitude of effect is important
 - > Sign is meaningless
- □ In example, $most \rightarrow least$ important effects:

$$\triangleright$$
 [C, D, E] \rightarrow F \rightarrow G \rightarrow A \rightarrow B

PB Design Matrix with Foldover

- □ Add X additional rows to matrix
 - > Signs of additional rows are opposite original rows
- □ Provides some additional information about selected interactions

45

PB Design Matrix with Foldover

A	В	С	D	E	F	G	Exec. Time
+1	+1	+1	-1	+1	-1	-1	9
-1	+1	+1	+1	-1	+1	-1	11
-1	-1	+1	+1	+1	-1	+1	2
+1	-1	-1	+1	+1	+1	-1	1
-1	+1	-1	-1	+1	+1	+1	9
+1	-1	+1	-1	-1	+1	+1	74
+1	+1	-1	+1	-1	-1	+1	7
-1	-1	-1	-1	-1	-1	-1	4
-1	-1	-1	+1	-1	+1	+1	17
+1	-1	-1	-1	+1	-1	+1	76
+1	+1	-1	-1	-1	+1	-1	6
-1	+1	+1	-1	-1	-1	+1	31
+1	-1	+1	+1	-1	-1	-1	19
-1	+1	-1	+1	+1	-1	-1	33
-1	-1	+1	-1	+1	+1	-1	6
+1	+1	+1	+1	+1	+1	+1	112
191	19	111	-13	79	55	239	

Case Study #1

- Determine the most significant parameters in a processor simulator.
- □ [Yi, Lilja, & Hawkins, HPCA, 2003.]

47

Determine the Most Significant Processor Parameters

□ Problem

- > So many parameters in a simulator
- > How to choose parameter values?
- How to decide which parameters are most important?

Approach

- > Choose reasonable upper/lower bounds.
- > Rank parameters by impact on total execution time.

Simulation Environment

- □ SimpleScalar simulator
 - > sim-outorder 3.0
- □ Selected SPEC 2000 Benchmarks
 - > gzip, vpr, gcc, mesa, art, mcf, equake, parser, vortex, bzip2, twolf
- □ MinneSPEC Reduced Input Sets
- □ Compiled with gcc (PISA) at O3

49

Functional Unit Values

Parameter	Low Value	High Value			
Int ALUs	1	4			
Int ALU Latency	2 Cycles	1 Cycle			
Int ALU Throughput	1				
FP ALUs	1	4			
FP ALU Latency	5 Cycles	1 Cycle			
FP ALU Throughputs	1				
Int Mult/Div Units	1	4			
Int Mult Latency	15 Cycles	2 Cycles			
Int Div Latency	80 Cycles	10 Cycles			
Int Mult Throughput	1				
Int Div Throughput	Equal to Int	Div Latency			
FP Mult/Div Units	1	4			
FP Mult Latency	5 Cycles	2 Cycles			
FP Div Latency	35 Cycles	10 Cycles			
FP Sqrt Latency	35 Cycles	15 Cycles			
FP Mult Throughput	Equal to FP Mult Latency				
FP Div Throughput	Equal to FP	Div Latency			
FP Sqrt Throughput	Equal to FP	Sqrt Latency			

Memory System Values, Part I

Parameter	Low Value	High Value		
L1 I-Cache Size	4 KB	128 KB		
L1 I-Cache Assoc	1-Way	8-Way		
L1 I-Cache Block Size	16 Bytes	64 Bytes		
L1 I-Cache Repl Policy	Least Recently Used			
L1 I-Cache Latency	4 Cycles	1 Cycle		
L1 D-Cache Size	4 KB	128 KB		
L1 D-Cache Assoc	1-Way	8-Way		
L1 D-Cache Block Size	16 Bytes	64 Bytes		
L1 D-Cache Repl Policy	Least Reco	ently Used		
L1 D-Cache Latency	4 Cycles	1 Cycle		
L2 Cache Size	256 KB	8192 KB		
L2 Cache Assoc	1-Way	8-Way		
L2 Cache Block Size	64 Bytes	256 Bytes		

51

Memory System Values, Part II

Parameter	Low Value	High Value		
L2 Cache Repl Policy	Least Rec	ently Used		
L2 Cache Latency	20 Cycles	5 Cycles		
Mem Latency, First	200 Cycles	50 Cycles		
Mem Latency, Next	0.02 * Mem Latency, First			
Mem Bandwidth	4 Bytes	32 Bytes		
I-TLB Size	32 Entries	256 Entries		
I-TLB Page Size	4 KB	4096 KB		
I-TLB Assoc	2-Way	Fully Assoc		
I-TLB Latency	80 Cycles	30 Cycles		
D-TLB Size	32 Entries	256 Entries		
D-TLB Page Size	Same as I-TLB Page Size			
D-TLB Assoc	2-Way	Fully-Assoc		
D-TLB Latency	Same as I-	TLB Latency		

Processor Core Values

Parameter	Low Value	High Value
Fetch Queue Entries	4	32
Branch Predictor	2-Level	Perfect
Branch MPred Penalty	10 Cycles	2 Cycles
RAS Entries	4	64
BTB Entries	16	512
BTB Assoc	2-Way	Fully-Assoc
Spec Branch Update	In Commit	In Decode
Decode/Issue Width	4-V	Vay
ROB Entries	8	64
LSQ Entries	0.25 * ROB	1.0 * ROB
Memory Ports	1	4

53

<u>Determining the Most Significant</u> <u>Parameters</u>

1. Run simulations to find response

· With input parameters at high/low, on/off values

Config		Input Parameters (factors)							
	A	В	С	D	E	F	G		
1	+1	+1	+1	-1	+1	-1	-1	9	
2	-1	+1	+1	+1	-1	+1	-1		
3	-1	-1	+1	+1	+1	-1	+1		
		•••	•••		•••	•••			
Effect									

<u>Determining the Most Significant</u> <u>Parameters</u>

2. Calculate the effect of each parameter

Across configurations

Config		Input Parameters (factors)								
	A	В	С	D	E	F	G			
1	+1	+1	+1	-1	+1	-1	-1	9		
2	-1	+1	+1	+1	-1	+1	-1			
3	-1	-1	+1	+1	+1	-1	+1			
		•••		•••			•••			
Effect	65									

55

<u>Determining the Most Significant</u> <u>Parameters</u>

3. For each benchmark

Rank the parameters in descending order of effect $(1=most\ important, ...)$

Parameter	Benchmark 1	Benchmark 2	Benchmark 3
Α	3	12	8
В	29	4	22
С	2	6	7

<u>Determining the Most Significant</u> <u>Parameters</u>

4. For each parameter **Average** the ranks

Parameter	Benchmark 1	Benchmark 2	Benchmark 3	Average
Α	3	12	8	7.67
В	29	4	22	18.3
С	2	6	7	5

57

<u>Most Significant Parameters</u>

Number	Parameter	gcc	gzip	ar t	Average
1	ROB Entries	4	1	2	2.77
2	L2 Cache Latency	2	4	4	4.00
3	Branch Predictor Accuracy	5	2	27	7.69
4	Number of Integer ALUs	8	3	29	9.08
5	L1 D-Cache Latency	7	7	8	10.00
6	L1 I-Cache Size	1	6	12	10.23
7	L2 Cache Size	6	9	1	10.62
8	L1 I-Cache Block Size	3	16	10	11.77
9	Memory Latency, First	9	36	3	12.31
10	LSQ Entries	10	12	39	12.62
11	Speculative Branch Update	28	8	16	18.23

General Procedure

- Determine upper/lower bounds for parameters
- Simulate configurations to find response
- Compute effects of each parameter for each configuration
- □ Rank the parameters for each benchmark based on effects
- Average the ranks across benchmarks
- □ Focus on top-ranked parameters for subsequent analysis

59

Case Study #2

□ Determine the "big picture" impact of a system enhancement.

<u>Determining the Overall Effect of an Enhancement</u>

□ Problem:

- Performance analysis is typically limited to single metrics
 - · Speedup, power consumption, miss rate, etc.
- > Simple analysis
 - · Discards a lot of good information

6

<u>Determining the Overall Effect of an</u> <u>Enhancement</u>

- □ Find most important parameters without enhancement
 - > Using Plackett and Burman
- □ Find most important parameters with enhancement
 - > Again using Plackett and Burman
- □ Compare parameter ranks

Example: Instruction Precomputation

- □ Profile to find the most common operations> 0+1, 1+1, etc.
- ☐ Insert the results of common operations in a table when the program is loaded into memory
- Query the table when an instruction is issued
- Don't execute the instruction if it is already in the table
- Reduces contention for function units

63

The Effect of Instruction Precomputation

Average Rank

Parameter	Before	After	Difference
ROB Entries	2.77		
L2 Cache Latency	4.00		
Branch Predictor Accuracy	7.69		
Number of Integer ALUs	9.08		
L1 D-Cache Latency	10.00		
L1 I-Cache Size	10.23		
L2 Cache Size	10.62		
L1 I-Cache Block Size	11.77		
Memory Latency, First	12.31		
LSQ Entries	12.62		

The Effect of Instruction Precomputation

Average Rank

Parameter	Before	After	Difference
ROB Entries	2.77	2.77	
L2 Cache Latency	4.00	4.00	
Branch Predictor Accuracy	7.69	7.92	
Number of Integer ALUs	9.08	10.54	
L1 D-Cache Latency	10.00	9.62	
L1 I-Cache Size	10.23	10.15	
L2 Cache Size	10.62	10.54	
L1 I-Cache Block Size	11.77	11.38	
Memory Latency, First	12.31	11.62	
LSQ Entries	12.62	13.00	

65

The Effect of Instruction Precomputation

Average Rank

Parameter	Before	After	Difference
ROB Entries	2.77	2.77	0.00
L2 Cache Latency	4.00	4.00	0.00
Branch Predictor Accuracy	7.69	7.92	-0.23
Number of Integer ALUs	9.08	10.54	-1.46
L1 D-Cache Latency	10.00	9.62	0.38
L1 I-Cache Size	10.23	10.15	0.08
L2 Cache Size	10.62	10.54	0.08
L1 I-Cache Block Size	11.77	11.38	0.39
Memory Latency, First	12.31	11.62	0.69
LSQ Entries	12.62	13.00	-0.38

Case Study #3

□ Benchmark program classification.

67

Benchmark Classification

- By application type
 - > Scientific and engineering applications
 - > Transaction processing applications
 - > Multimedia applications
- By use of processor function units
 - > Floating-point code
 - > Integer code
 - > Memory intensive code
- □ Etc., etc.

Another Point-of-View

- Classify by overall impact on processor
- □ Define:
 - > Two benchmark programs are similar if -
 - They stress the same components of a system to similar degrees
- ☐ How to measure this similarity?
 - > Use Plackett and Burman design to find ranks
 - > Then compare ranks

69

Similarity metric

- Use rank of each parameter as elements of a vector
- □ For benchmark program X, let
 - > X = $(x_1, x_2, ..., x_{n-1}, x_n)$
 - $> x_1$ = rank of parameter 1
 - > x_2 = rank of parameter 2

> ...

<u>Vector Defines a Point in</u> <u>n-space</u>

Param #3

71

Similarity Metric

□ Euclidean Distance Between Points

$$D = [(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_{n-1} - y_{n-1})^2 + (x_n - y_n)^2]^{1/2}$$

Most Significant Parameters

Number	Parameter	gcc	gzip	art
1	ROB Entries	4	1	2
2	L2 Cache Latency	2	4	4
3	Branch Predictor Accuracy	5	2	27
4	Number of Integer ALUs	8	3	29
5	L1 D-Cache Latency	7	7	8
6	L1 I-Cache Size	1	6	12
7	L2 Cache Size	6	9	1
8	L1 I-Cache Block Size	3	16	10
9	Memory Latency, First	9	36	3
10	LSQ Entries	10	12	39
11	Speculative Branch Update	28	8	16

73

Distance Computation

□ Rank vectors

- \rightarrow Gcc = (4, 2, 5, 8, ...)
- \rightarrow Gzip = (1, 4, 2, 3, ...)
- > Art = (2, 4, 27, 29, ...)

□ Euclidean distances

- \rightarrow D(gcc gzip) = [(4-1)² + (2-4)² + (5-2)² + ...]^{1/2}
- $D(gcc art) = [(4-2)^2 + (2-4)^2 + (5-27)^2 + ...]^{1/2}$
- $D(gzip art) = [(1-2)^2 + (4-4)^2 + (2-27)^2 + ...]^{1/2}$

<u>Euclidean Distances for Selected</u> <u>Benchmarks</u>

	gcc	gzip	art	mcf
gcc	0	81.9	92.6	94.5
gzip		0	113.5	109.6
art			0	98.6
mcf				0

Final Benchmark Groupings

Group	Benchmarks	
I	Gzip,mesa	
II	Vpr-Place,twolf	
III	Vpr-Route, parser, bzip2	
IV	Gcc, vortex	
V	Art	
VI	Mcf	
VII	Equake	
VIII	ammp	

77

Important Points

- □ Multifactorial (Plackett and Burman) design
 - > Requires only O(m) experiments
 - > Determines effects of main factors only
 - > Ignores interactions
- $lue{}$ Logically minimal number of experiments to estimate effects of m input parameters
- Powerful technique for obtaining a bigpicture view of a lot of data

Summary

- □ Design of experiments
 - > Isolate effects of each input variable.
 - > Determine effects of interactions.
 - > Determine magnitude of experimental error
- □ m-factor ANOVA (full factorial design)
 - > All effects, interactions, and errors

79

Summary

- □ n2^m designs
 - > Fractional factorial design
- □ All effects, interactions, and errors
- □ But for only 2 input values
 - > high/low
 - > on/off

Summary

- Plackett and Burman (multi-factorial design)
- \bigcirc O(m) experiments
- Main effects only
 - > No interactions
- □ For only 2 input values (high/low, on/off)
- Examples rank parameters, group benchmarks, overall impact of an enhancement